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Writing programs against weak consistency is inherently difficult. This

dissertation makes the job of writing safe programs against weak

consistency easier, by introducing programming languages in which

strong guarantees are defended from weakly-consistent influence, and in

which programmers can write consistent-by-construction programs atop

underlying weakly-consistent replication.

The first of these languages is MixT, a new language for writing

mixed-consistency transactions. These atomic transactions can operate

against data at multiple consistency levels simultaneously, and are

equipped with an information-flow type system which guarantees

weakly-consistent observations cannot influence strongly-consistent

actions.

While mixed-consistency transactions can defend strong data from weak

observations, they cannot ensure that fully-weak code is itself correct. To

address this, we leverage monotonic data types to introduce a core

language of datalog-like predicates and triggers. In this language,

programmers can write monotonic functions over a set of monotonic

shared objects, ultimately resulting in a boolean. These monotonic,

boolean-returning functions are stable predicates: once they have become
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true, they remain true for all time. Actions which are predicated on these

stable predicates cannot be invalidated by missed or future updates.

This monotonic language sits at the core of Derecho, a new system for

building strongly-consistent distributed systems via replicated state

machines. Derecho’s Shared State Table (SST) implements monotonic

datatypes atop Remote Direct Memory Access (RDMA), resulting in a

high-performance, asynchronous substrate on which to build Derecho’s

monotonic language. Using this SST, we have rephrased the Paxos

delivery condition monotonically, granting strong consistency despite the

underlying asynchronous replication.

Finally Gallifrey exposes the monotonic reasoning properties of Derecho’s

core language directly to the user, safely integrating monotonic datatypes

into a traditional Java-like programming language. Gallifrey allows any

object to be asynchronously replicated via Restrictions to its interface, allow-

ing only those operations which are safe to call concurrently. Datatypes

shared under these restrictions can be viewed monotonically, using a

language of predicates and triggers similar to that at the core of Dere-

cho. A novel linear region-based type system enforces that shared object

restrictions are respected.
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0
I N T R O D U C T I O N

0.1 setting the stage

Our interconnected world is increasingly reliant on large, complex dis-

tributed programs. They power our homes, mediate our interactions,

provide us food, give us jobs, and make our modern life possible. Ev-

ery day, the scale of these programs—and the volumes of data they must

process—grows, leaving distributed programming platforms that appeared

future-proof even just a few years ago struggling to cope.

This reality has posed a challenge to distributed systems programming,

to put it mildly. In the face of the demands of ever-increasing scale, replica-

tion has become essential. Data kept on a single machine is vulnerable to

loss if that machine fails, and accesses to that data must contend with high

load if the data is popular, or high latency if data is located far from where

it is needed. Therefore, in any large-scale distributed system, data must be

replicated; copies of that data must exist on multiple machines, allowing

the system to place replicas close to where the data is needed, and to

ensure some source of the data remains available even when replicas fail.

The trouble with replication is consistency. When we teach programmers

how to write concurrent or distributed code, we tell them to imagine

that each thread of execution will be arbitrarily interleaved—that the

next instruction, or next transaction, will be individually selected and

1
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executed in isolation. Implicit in this model is the idea of memory as a

monolith; memory (or a database) enforces sequential access, allowing only

a single instruction (or transaction) to execute at a time. This abstraction

is powerful, and sits at the root of familiar “synchronous” concurrency

control mechanisms such as locks.

Under replication there is no easy monolith. Performant replicated

systems must allow all replicas to process operations, threatening the

abstraction of a single monolithic monitor. But giving up on sequentiality

comes at a high price, invalidating patterns that have served us well for

decades.

To avoid paying this price, traditional systems present an interface to

memory (or a database) which guarantees strong consistency properties

like linearizability [Herlihy and Wing, 1988]: that all operations will appear

to occur in a total order, consistent with the real-world order in which

they were submitted. But the consensus protocols [Pease, Shostak, and L.

Lamport, 1980] used to enforce these strong consistency properties are

expensive and latency-sensitive, limiting the scale of strongly consistent

replicated systems and leaving them, for the most part, locked within a

single datacenter.

The expense of traditional consensus has led many in the systems com-

munity to give up on strong consistency, leading to the rise of a new class

of distributed systems. These systems abandon the old, familiar abstrac-

tions of ACID database transactions and consistent memory for a new class

of nimble, weakly consistent distributed systems. These systems promise

unprecedented scale, robustness under load and persistent operation even

during partial system failures [Brewer, 2010].
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There’s only one problem, though: these systems are incredibly hard to

program against. The hallmark property that all weakly consistent systems

share is asynchronous replication: the idea that a client performing a write

at one replica will have their operation acknowledged before knowledge

of it has reached other replicas. This technique can result in seemingly-

impossible program traces, shattering our abstraction of memory as a

monolith. Under weak consistency, concurrent threads simply do not

appear to execute in an interleaved, instruction-at-a-time fashion. Rather,

some instructions appear to “teleport” back in time, observing a state of

memory which no longer exists.

And that’s just the well-behaved weakly consistent systems. Certain

memory models in use today—such as the one encoded in the semantics of

C11—have even even stranger semantics. These models allow speculative

reads that may be justified by some future write, leading to a phenomenon

of out-of-thin-air or self-justifying reads in which a thread reads an arbitrary

value and then proceeds to write it, producing the very operation that

justified their read in the first place [Batty et al., 2011].

Pervasive and familiar patterns possible with strong consistency—such

as the simple idea of holding a lock—are simply impossible under weak

consistency [Leslie Lamport, Perl, and Weihl, 2000]. In their place, program-

mers must rely on careful engineering requiring detailed knowledge of

the precise consistency guarantees provided by their underlying systems.

This can be done; much of the modern web is built on weak consistency.

But it is all too easy to get wrong.
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0.2 an overview of contributions

The goal of this work is to make it easier to write safe programs against

weak consistency, by introducing programming languages in which strong

guarantees are defended from weakly consistent influence, and in which

programmers can write consistent-by-construction programs atop under-

lying weakly consistent replication.

We need to start by recognizing that the core challenge of weak

consistency—understanding how to write correct programs given a set

of confusing primitives—is not just a systems problem. It’s a language

problem. As this dissertation demonstrates, programming languages give

us the tools we need to use consistency safely. Through language design in

particular, we can build languages in which every program uses consistency

safely.

We find ourselves at a crossroads. We can accept the reality of weakly

consistent systems, and invest our energy in building languages that ease

the task of programming against today’s weakly consistent systems. We

could revisit the role of consistent replication, engineering new consistent

systems—and new ways of using them—better-suited to the modern scale.

Or we could change our abstractions, avoiding the need to reason directly

about consistency at all.

This dissertation explores each of these directions. Recognizing that the

world’s data cannot easily be moved, chapter 1 starts by improving the

safety of existing weakly consistent systems through a novel abstraction of

mixed-consistency transactions in the MixT programming language. Next,

chapter 2 demonstrates that strong consistency can scale by introducing a
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new programming language in which consistent-by-construction programs

can be built atop asynchronous replication. This language lies at the

core of Derecho, a new system for programming with strongly consistent

replicated actors. Finally, chapter 3 introduces Gallifrey, a new language for

building externally-consistent applications atop an abstraction of weakly

consistent replicated actors. To support the static guarantees of Gallifrey,

chapter 4 presents a new type system to enforce reservation safety, a form

of memory-safety property powerful enough to capture freedom from

destructive races.

0.3 meeting the mixed-consistency world with mixt

0.3.1 Where We Are Today

Before we can imagine a world of tomorrow, we must face the world

of today: a mishmash of applications and databases offering varying

guarantees, with legacy stores1 straining against their loads and newer

weakly consistent systems slowly replacing them. Modern distributed

application development is an endless parade of growing pains; while

the narrative in academia may feature a new class of systems rising to

replace the old, the reality in industry is less “replace” and more “join.”

While newer, faster systems come online every day to serve emerging

applications, legacy systems persist. These legacy systems are large, and

complex, and expensive to replace, storing petabytes (at least) and serving

live applications. Industry is not in a rush to migrate this data to a new,

untested solution after every SOSP.

1 Or data stores, or databases; we will use these terms largely interchangeably.
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Industrial distributed systems programmers face this difficult reality:

the data that their distributed applications need is rarely stored in just one

database [Brown, 2017]. And in our brave new world of weakly consistent

stores, with every new database comes a new consistency model, leaving

distributed application programmers with a dizzying array of distinct

consistency guarantees.

While evidence from industry suggests programming against a sin-

gle weak consistency model is viable ([Carlson, 2013; Gentz et al., 2017;

Klophaus, 2010; Lakshman and Malik, 2010; Plugge, Membrey, and

Hawkins, 2010]), albeit with effort, programming against multiple such

models at once currently is not; beyond the simple cognitive task of un-

derstanding each model’s guarantees in isolation, programmers need to

reason about how those models compose.

In fact, sometimes the composition of two systems fails to guarantee

the behaviors that both systems offer individually. Consider linearizability

and causal+ consistency as an example. As defined by Herlihy and Wing,

linearizability guarantees that all operations will appear to occur in the

order they were submitted, consistent with the global “wall clock” time of

the observers [Herlihy and Wing, 1988]. As defined by Lloyd, Freedman,

and Kaminsky, Causal+ consistency offers a weaker guarantee: that an

operation will be ordered after any operations which may have caused it,

here defined as those operations visible to the issuer at the time of issuance

[Lloyd et al., 2011]. It should be intuitively clear that linearizability is

strictly stronger than causal+ consistency; we should therefore expect an

application which relies on only causal+ and linearizable data stores to

witness at least causal+ consistency.
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In this we would be mistaken. The trouble is that our question of how

to compose distinct consistency models has arisen from a need to write

programs which access multiple mutually-unaware systems. These systems

have no means of exporting their guarantees to one another. If a client

issues one operation against a causal store, and a subsequent operation

against a linearizable store, it is possible—indeed likely—that the speed of

replication for the linearizable operation will outstrip that of the causal one.

A subsequent reader at a different replica would then be able to observe

the linearizable operation’s effect before the causal operation reaches this

replica, violating causality.

To make matters worse, programmers are left to fight against this com-

plexity without their most valuable tool: transactions. ACID transactions

([Gray, 1981; Haerder and Reuter, 1983]) are the core concurrency con-

trol tool available in database programming; they allow a fragment of

code to appear to run in isolation, as though it was accomplished in

its entirety with a single operation at the database’s consistency level.2

While transactions are ubiquitous even in weakly consistent systems, it

is nearly impossible to build transactions which operate against multiple

such systems in the same transaction.

Against this backdrop runs our distributed programming ecosystem.

Applications, with state spanning multiple stores, built atop guarantees

that are hard to understand individually and harder still to understand in

composition. All without access to transactions, the primary way to make

distributed programming sane.

2 In fact only the the atomic and isolated properties of ACID transactions are necessary
here—the AI of ACID. The CD, which stand for consistent and durable, are a relic of
disk-based relational databases and have a fluid interpretation in modern systems. It
is worth noting that “consistent” here is with respect to relational constraints, and has
nothing to do with consistency models.
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0.3.2 Static Information Flow for Consistency

The first step towards taming this wilderness comes in the form of an

observation. When programmers choose which database should store

which data, they are implicitly tying the consistency of that database

to the invariants they wish to maintain over that data. This makes con-

sistency, rather than being a property of a database or an operation, a

property of the data itself. When a programmer requests a linearizable

transaction to manipulate data, what they are saying is that the guaran-

tees of linearizability—that objects are always up-to-date—are essential to

maintaining the invariants on their data. Thus the important thing here

is not so much the protocol for reading and writing, but the guarantee of

freshness for the data being read and written.

Leveraging this observation forms a correctness condition: if consistency

is a property of data, then it should be an error to allow less-consistent

observations to influence more-consistent data. This condition effectively

makes consistency the analog of integrity; less consistent data is less

trustworthy, and should not be allowed to influence more-trustworthy, or

more-consistent data.

And while the field of programming languages may be relatively newly-

arrived to the problem of programming against multiple levels of dis-

tributed consistency, it has made great strides in the problem of program-

ming against a decentralized model of heterogeneous integrity [Askarov

and A. Myers, 2010; Biba, 1977; Sabelfeld and A. C. Myers, 2003]. Those

solutions apply here; in particular, a standard type system for static in-

tegrity information flow can be applied directly to consistency. All one
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needs are labels—here the consistency models supported by underlying

databases—drawn from a lattice. Such a lattice can be found in the work of

Viotti and Vukolić, who have already partially ordered consistency models

by the guarantees they provide [Viotti and Vukolić, 2016].

This information-flow type system enforces exactly the property moti-

vated earlier: that it should be an error to allow less-consistent observations

to influence more-consistent data. But consistency is not quite integrity.

In some ways this is good—consistency can often be recovered simply

by waiting for a period of quiescence, or performing a read with a larger

quorum of replicas, both much cheaper operations than the sort of multi-

participant join required to recover integrity. But consistency is also weaker

than integrity in one critical way: the moment an operation has completed,

the guarantees provided by consistency begin to weaken. A linearizable

read may have returned the most up-to-date value available at the time

of the read, but during the time taken to process that value it could well

become stale.

Simply put, data atrophies. Because of this, it would be a mistake

to simply write programs in an integrity information-flow type system;

while the system will ensure that weakly consistent reads do not influence

strongly consistent writes, it will be unable to ward against once-consistent

reads that, due to their use outside a transaction, no longer represent

consistent data.
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0.3.3 Mixed-Consistency Transactions

The right place to put an information-flow type system for consistency

is within the transactions themselves. Through their ACID properties,

transactions ensure that the data read within a transaction retains its

consistency guarantees for the transaction’s duration. But here lies a

problem: our target domain features applications which program against

multiple databases, and there are no efficient and correct transactions

mechanisms that span databases. And even for cases which require only a

single store, traditional transactions always execute at a single consistency

level; we’d be stuck paying the performance penalty of the maximum

consistency in the transaction, despite the fact that access to less-consistent

data is safe under weak consistency. We need a transaction mechanism

that can span stores and contain operations at many consistency levels

simultaneously; without just upgrading them to the strongest.

This dissertation contains such a mechanism. Chapter 1 of this dis-

sertation presents MixT, a domain-specific language for programming

mixed-consistency transactions against multiple, mutually-unaware back-

ing stores. MixT leverages the analogy with integrity to implement an

information-flow type system for reasoning about consistency within

transactions. But it also strengthens the system slightly in the process;

rather than simply banning weak-consistency observations from influenc-

ing strong-consistency writes, as would be done in a traditional integrity

information-flow system, MixT bans weak-consistency observations from

influencing strong-consistency reads as well. The choice of what data to

read cannot depend on an observation made at a weaker consistency level.
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This strengthening of the type system is not necessary for correctness,

but it does allow MixT to effectively pipeline all its operations; as no pos-

sible weak observation can influence a strong operation, it is possible to

execute the strong portion of the transaction in its entirety before proceed-

ing to the weaker portions. Using this insight, MixT implements cross-store

transactions by chopping a mixed-consistency transaction up into phases,

with one phase per consistency level. MixT then runs each component

transaction at its corresponding store, using a lightweight runtime mecha-

nism to synchronize these single-store component transactions.

0.3.4 Problems Still Persist

MixT successfully reduces the difficulty of programming against multiple

consistency models simultaneously back to the difficulty of programming

against each of these models in isolation. But this is still a hard problem!

MixT’s guarantees are only as good at the labels it uses, and it says

nothing about whether code within a single consistency model is using

that model correctly. It is still just as possible to write subtly-incorrect

weakly consistent programs with MixT as it was to write them against a

single weakly consistent store.

0.4 in defense of strong consistency with derecho

There are two ways to address the challenge of programming directly

against weak consistency: build new languages in which programs which

operate against weak consistency are consistent by construction, or build
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new strongly consistent systems which are fast enough to avoid the need

for weak consistency in the first place. Neither is a replacement for the

other: consistent-by-construction languages are (by necessity) less expres-

sive than general-purpose programming atop strong consistency, while

enforcing weak consistency will always introduce less overhead than en-

forcing strong.

The key is not to view these solutions in isolation, but rather as two com-

ponents of a single solution. We can build a consistent-by-construction pro-

gramming language expressly for the purpose of writing a next-generation

strongly-consistent distributed system. The resulting system inherits the

asynchronous, streaming-style of computation native to weak consistency,

without opening itself up directly to the dangers of weak consistency.

0.4.1 Existing Solutions

In fact, several consistent-by-construction languages suitable for this task

already exist. An example of such a language is BloomL, introduced by

Peter Alvaro, Neil Conway, and Joe Hellerstein. BloomL dramatically re-

imagines the role of the programming language in distributed systems,

stripping down the available operations into a core set of Datalog-like op-

erators guaranteed to be convergent, and consistent, under asynchronous

replication [Conway et al., 2012]. Using BloomL, programmers can write

correct-by-construction distributed code which witnesses the same behav-

iors under weak consistency as it does under strong, eliminating the role

of consistent replication almost entirely in the process. This language is

(necessarily) quite limited, but is expressive enough for some applications.
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But simply writing a system in the asynchronous style enabled by

BloomL will not be sufficient to displace weak consistency in the datacen-

ter. Weak consistency, fundamentally, requires consensus; and consensus

requires round trips.

Existing work shows us that within a datacenter, the costs of round-

trip communication can be managed—especially if emerging network

fabrics are in the mix. The domain of emerging hardware continues to

open exciting opportunities to reduce the cost of replication, featuring

such innovative solutions as using software-defined network switches

to push consensus protocols into the network itself [Dang et al., 2015;

Jialin Li et al., 2016], or leveraging new Remote Direct Memory Access

(RDMA) hardware to bypass not just the CPU, but the copy-heavy design

of traditional POSIX sockets entirely [Balakrishnan et al., 2012; Dragojević

et al., 2014]. It is this latter technology that has been most directly applied

to the issue of replication, with major cloud providers, including Microsoft,

rolling out user-accessible RDMA in their public clouds.

Along with this availability has come a flurry of papers demonstrating

that the performance improvements of RDMA stun at all levels of abstrac-

tion. At their lowest levels, traditional replicated systems rely on consensus

protocols, most popularly the many variants of Paxos, to provide a totally-

ordered stream of events. By adapting Disk-Paxos to RDMA hardware, a

team led by Naama Ben-David demonstrated that even these decades-old

protocols can enjoy order-of-magnitude performance improvements over

RDMA [Aguilera et al., 2019]. Moving RDMA up the stack only brings

more improvements; systems like Corfu and FARM have demonstrated

that rethinking replicated storage itself in the presence of RDMA can yield
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systems which process events at previously unheard-of rates [Balakrishnan

et al., 2012; Dragojević et al., 2014].

We can also question another core assumption of consistent replication:

that consensus is required at every step in the first place. Existing work

makes it clear that significant exceptions to this assumption exist. For

example, Google’s Spanner leverages GPS and atomic clocks to keep

replicas precisely synchronized, taking the “wall clock” time required by

linearizability quite literally [Corbett et al., 2013]. But perhaps Spanner’s

more interesting innovation comes in their read-only transactions. In

Spanner, read-only transactions are allowed to return slightly stale results—

a seeming violation of linearizability. In justifying this choice, the designers

of Spanner argue that, given the latencies involved in communication with

clients in a distributed system, having a slightly stale read result returned

to the client is no different than having an up-to-date result returned

to a client living a few milliseconds further away. This argument is not

dissimilar to our earlier reasoning about the key differences between

consistency and integrity as properties of data: the moment data leaves

a transaction its consistency begins to decay. By focusing their energy

on transactions which write, Spanner’s basic architecture—variations of

which have since found their way into many other systems—is able to

scale impressively for certain workloads.

Spanner effectively argues that the presence of some less-than-consistent

system behaviors should be permitted if the result is indistinguishable (or

nearly so) from fully consistent behaviors; they have (perhaps unwittingly)

once again taken the question of consistency out of the system domain

and into the domain of programming languages. The authors of Spanner

are making an argument that properties of the programs written to run
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against Spanner—in particular the latency between those programs and the

Spanner system itself—composed with the nearly-linearizable guarantees

provided by Spanner, results in an externally consistent program: one in

which the visible effects of the program running against near-linearizable

storage are in line with those expected under a truly-linearizable execution.

The key observation is that by limiting the language (e.g. by introducing

latency in Spanner), one can reduce the guarantees provided by storage

without changing the behavior of programs running against it. We can

view the techniques of BloomL as an extreme example of this.

0.4.2 Convergent Programming over RDMA

These two different approaches—limiting the language vs reducing round-

trip times—have demonstrated two very different ways to achieve consis-

tency without the limitations imposed by traditional replication protocols.

But even more performance can be unlocked by combining them. Chapter

2 of this dissertation explores leveraging monotonicity over RDMA in the

construction of a new system: Derecho. Derecho’s core component is a

simple shared state table (SST) data structure for storing state replicated

via RDMA. This structure is a table, but with a twist: each row of the

table may be written to only by a dedicated node corresponding to that

row. State is replicated by having each node directly write its assigned

row to the table at all replicas, ensuring both that no write-write conflicts

may occur, and that the cost of replication is borne only by the CPU of

the writer; RDMA allows the write to skip the receiver’s CPU entirely,

depositing the write directly into memory. Derecho places one additional
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limitation on the SST: the data it stores must be ordered, and writes to the

SST must be monotonic. Any write performed to a cell of the SST must be

of some value equal to or greater than the one it is replacing, according to

some globally agreed-upon ordering.

Atop this SST sits a new core language for monotonic programming.

The core of this language is a set of combinators used to define monotonic

predicates over ordered data. These combinators are used to read values

from the SST, transforming ordered datatypes—such as counters—into

boolean observations. Because the combinators of this language are mono-

tonic, and because the state of the SST itself evolves monotonically, all

predicates written in this language are stable: once they become true, they

remain true for the remainder of the program.

Using these monotonic predicates, programmers can also supply triggers,

snippets of code to be executed when certain predicates become true. These

triggers, too, are limited; they can read values from the SST, use mono-

tonic combinators to transform them, and then write those values back

elsewhere in the SST. Additionally, triggers may use a general-purpose lan-

guage to perform arbitrary computations and produce externally-visible

effects, but must ensure the computations they perform do not depend on

weakly consistent values in the SST.

Much like its cousin BloomL, this highly limited language comes with

a compelling correctness result: the same set of triggers will fire under a

weakly consistent execution as would fire under a linearizable execution.

This core language combines the speed of both RDMA-based replication and

convergent asynchronous programming, providing an unrivaled substrate

atop which to build programs.
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But we cannot stop here. This language is too limited to be used to

build realistic distributed applications; deploying it directly into the world

would do nothing to stop the spread of more expressive, weakly consistent

systems. There is however one “killer app” for which this language is

quite well-suited: building the strongly consistent replication protocols

themselves.

0.4.3 Derecho: Datacenter Replication at the Speed of Light

It turns out that the core problem of replication itself can be phrased as

a sequence of stable predicates over monotonic, protocol-defined state.

Leveraging this, one can build consistent replication atop this core SST

language, ensuring that replicas process operations with minimal delay.

We do this in Derecho, adopting Ken Birman’s virtual synchrony proto-

col [K. Birman and T. Joseph, 1987] to the SST and producing best-in-class

data rates in the process. Beyond its novel synthesis of RDMA and mono-

tonicity, Derecho also leverages the idea of control plane and data plane

separation, implementing its data streaming protocol out-of-band with its

control messages. Data managed by the system is replicated via RDMC,

which implements pipelined reliable multicast atop RDMA [Behrens et al.,

2018]. RDMC-delivered messages are then held at the receiver until the

SST’s consensus protocol confirms all correct replicas have received them.

Derecho’s separation of data and control makes it especially well-suited

to the domain of streaming computation or batched data processing. These

systems are in increasingly high demand, as new sources of data—such as

the cameras, drones, and monitoring systems that are quickly becoming
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ubiquitous in all corners of life—overwhelm existing consistent systems,

forcing users to fall back to weakly consistent systems to process this

data. Current industry-standard strongly consistent systems have been

overwhelmed by the data tsunami. Derecho is a system built to survive it.

Rather than provide a simple key–value store or the monolithic abstrac-

tions of a database, Derecho instead serves as a library via which replicated

programs can be built directly. Derecho’s core user-facing abstraction is of

Replicated Actors [Hewitt, Bishop, and Steiger, 1973], managed by Derecho

and used by programmers via a custom, RDMA-aware RMI framework.

Derecho mixes this idea with the once-popular model of process groups,

automatically allocating, partitioning, and decommissioning instances of

these actors based on programmer-supplied constraints. These abstrac-

tions make Derecho almost a language itself: a DSL for replicated actors,

embedded within C++.

Using Derecho’s replicated actors, the Derecho team has built several

example distributed systems, including the ever-popular key-value store

and a distributed filesystem.

0.4.4 The Limits of RDMA

Within a single datacenter, the performance enabled by Derecho obviates

the need for weak consistency, demonstrating that strongly consistent

replication is alive and well. But modern distributed applications cannot

always be confined to a single datacenter; and in the wide area, transport

technologies have simply not seen the same pace of innovation. While

RDMA over the wide area does exist, it is as yet not reliable enough for
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use with Derecho; and while Derecho does have a TCP backend, its core

components were carefully engineered for the setting of RDMA within

a single datacenter. At present, Derecho over the wide area remains a

work-in-progress; in this domain, weak consistency still rules.

At a large enough scale, the abstraction of lockstep replication will

simply never be viable. Two replicas attempting to synchronize across con-

tinents will always need to contend with the speed of light, introducing a

hard lower bound on the round-trip time required for consistent replica-

tion. In these settings, the latency of replication really is fundamental.

So we must again turn to that hallmark of weak consistency: asyn-

chronous replication. But this time we must find a way to ensure the data

we share stays consistent, despite asynchronous replication.

0.5 consistent programming over the wide area with gal-

lifrey

0.5.1 Systems Solutions with CRDTs

Existing attempts to build strong consistency on asynchronous replication

have had mixed results. In the systems community, efforts to build correct

programs with asynchronous replication have rallied around the idea of

Commutative (then convergent, then consistent) Replicated Data Types

(CRDTs) [Shapiro, 2017]. As most famously posed by Marc Shapiro, CRDTs

are collections of data structures all of whose operations commute. This

means that individual replicas will always converge to the same state, no

matter the order in which they believe their operations occurred. This idea
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does an end-run around the question of consistency itself; consistency

focuses on the order operations are allowed to appear in, and CRDTs

boldly declare that this order doesn’t really matter. As CRDTs have gained

popularity, they have been introduced as core primitives in many weakly

consistent systems like Cassandra and MongoDB, [Lakshman and Malik,

2010; Plugge, Membrey, and Hawkins, 2010]. These systems tend to offer

CRDTs alongside traditional weakly consistent registers, but increasingly,

whole systems are being built around CRDTs and CRDTs alone [Akkoorath

et al., 2016].

The promise of integrating CRDTs into weakly consistent storage sys-

tems is clear. The worst danger of weak consistency is the lost write; the

possibility that a critical operation will simply disappear from a system,

having been “overwritten” by some event from arbitrarily far into the fu-

ture or long into the past. With CRDTs that fear vanishes; the guarantee of

commutativity also provides a guarantee that overwriting simply doesn’t

happen. Think about it: if some operation o2 overwrites some operation o1,

then that implies that o1 happened before o2. This in turn means that o1

and o2 can’t commute; if we were to reverse their apparent order, then the

apparent overwriting should go away.

While not all data structures feature fully commutative operations, one

in particular does: the grow-only set. Catchy example CRDTs, like the

shopping cart from DynamoDB [DeCandia et al., 2007] or vote tallies from

my own work [Milano and A. C. Myers, 2018], all tend to boil down to sets

which only grow: for example with maps implemented as sets of pairs,

counters implemented as sets of increment operations, and shopping carts

implemented as sets of items. Even CRDTs which permit removal still tend

to be represented by sets that only grow; rather than have a single set, you
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have two: one for items to add, and one for items to remove. It’s up to the

reader of those sets to decide what to do with them.

The problem with CRDTs, as it turns out, is reading them. CRDTs

guarantee that all operations commute; they do not guarantee that any

particular set of operations will be visible at any particular replica within

any particular time frame. This means that the reader of a CRDT is still

left with weak consistency. And if that reader uses its weakly consistent

observations to then issue CRDT operations, the illusion of the consistent

CRDT is shattered; suddenly there can again be “writes” which are not

justified by any sequential order of operations in the system. This is where

the harsh limitations of BloomL and Derecho’s core language come from.

It’s not enough for the program to issue commutative operations; it must

also ensure that the observations which caused those operations themselves

commute.

Without resorting to language limitations, the maximum consistency that

a system under fully asynchronous replication can offer is a variation on

causal consistency [Mahajan, Alvisi, Dahlin, et al., 2011]. This consistency

corresponds to a full information protocol; it’s what you get if every

node is constantly gossiping its entire message history and local state to

every other replica it can find3. The native CRDT of causal+ consistency

is the partially-ordered log; systems like fuzzylog or Corfu offer this

log abstraction directly—with the blazing speed of weak consistency of

course—and it too has proven a popular abstraction against which to build

distributed programs [Balakrishnan et al., 2012; Lockerman et al., 2018]. If

you’re willing to make some semi-synchronous or some high availability

3 Of course, real implementations are substantially more efficient than this naive protocol
implies
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assumptions, you can improve on causal consistency a bit with prefix

consistency, which promises that all unknown operations occur within a

single “gap” in the operation history visible to a client; it’s usually phrased

as a log in which all clients know some prefix (the global log) and some

suffix (their pending operations), with a gap in the middle [D. Terry, 2013].

Combining CRDTs with causal+ or prefix consistency unquestionably

improves the reliability of distributed programs. But it’s still not strong

consistency. Bizarre errors can (and do) still occur, and the programmer

still has no access to that basic reassuring metaphor of monolithic memory,

sequentially processing events.

So we must turn once again to the language side of this problem, and

the idea that limitations to the expressiveness of the language can allow

for consistent programming over asynchronous replication. We can lift

the simple languages that thrive in this space—like BloomL or the SST’s

monotonic core language—into a general-purpose setting, and make them

viable for large-scale, wide-area distributed application development.

0.5.2 Gallifrey: A New Language for Geodistributed Programming

The key to building a consistent language over asynchronous replication is

to drill down on the core weakness of current CRDT use: using the exact

(weakly consistent) value of a CRDT in determining which CRDT opera-

tions to issue. This sounds like something we’ve heard before, twice now.

MixT argues that allowing weakly consistent reads to influence strongly

consistent writes can lead to errors; now we see the error is allowing

weakly consistent reads to influence any writes. But some weakly consis-
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tent reads are safe: in Derecho’s core, the SST’s language of combinators

expresses stable predicates over monotonic data, ensuring actions triggered

by these predicates are safe to perform even if the underlying monotonic

data is not strongly consistent. Under Derecho’s model, we learned that

general-purpose computation which depends only on the existence of

some true predicates will always be safe to perform.

This, then, is our plan. We integrate a language of monotonic mutations

and transformations—like the core language of Derecho—into a general-

purpose, imperative programming language, allowing both monotonic

mutations to shared data and predicate/trigger-style observations of it.

And like MixT, we employ a type system to ensure that these limits are

respected: that the general-purpose computations we perform do not

normally observe our weakly consistent state, and that the code which

has access to weak consistency does not influence the remainder of the

program—except through stable predicates over monotonic state.

But it’s not enough to stop there. Simply promising a type system for the

safe use of CRDTs will not satisfy the needs of distributed programmers.

CRDTs alone have not proven expressive enough in the past; limiting

them is unlikely to improve matters. We must combine our safe CRDTs

with a more general-purpose—and necessarily synchronous—mechanism

for sharing arbitrary data, allowing for patterns—like locks—which are

simply not possible under weak consistency.

The solution is to erase the distinction between objects managed by the

system and those native to the program. To eliminate the idea that there are

a finite set of CRDT types, and replace it with a unified model of objects,

some of which may be replicated, working together in a traditional, Java-

like object-oriented programming language. What we propose is a notion
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of orthogonal replication: that at any point, any traditional sequentially-

specified object may be shared, or any existing shared object may be

reclaimed as a sequential one.

Enabling this idea are two key new language features: Restrictions (in

chapter 3, with Gallifrey) and an isolation type system (in chapter 4).

Restrictions refine the interface of a sequential object, identifying a subset

of the object’s methods which are safe to call concurrently. Restrictions

effectively identify the CRDT hiding within a sequential object, and expose

only the operations of this hidden CRDT. If the operations exposed by a

restriction correspond to a set of monotonic mutations, then restrictions

also allow programmers to specify tests over their shared object. Much like

the predicates within Derecho, these tests are monotonic computations

over shared state, and may be used to define triggers which fire once

the predicate becomes true. Taking a queue from Lasp [Meiklejohn and

Van Roy, 2015], Gallifrey’s predicates and triggers have the form of a

when(predicate) trigger statement which blocks until the predicate is

true.

Restrictions are not limited to just sharing traditional CRDTs, however.

Restrictions also allow programmers to expose even non-commutative

(or non-monotonic) operations on shared data, requiring that program-

mers supply a merge function to resolve any conflicts which may occur

during runtime. By ensuring these operations cannot influence any ex-

posed observations, Restrictions know that allowing such operations will

not weaken the consistency of the overall application. When an object

outgrows the bounds of a single restriction, programs may transition it

into a new restriction. This requires consensus; before these operations

are allowed to occur, the system as a whole must agree on the “true”
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value of the underlying object. Using these mechanisms, programmers

can implement synchronous behavior—like reading exact values—atop

asynchronously-replicated objects.

0.6 reasoning about isolation with static types

Embracing the idea of sharing any object raises an important question:

where does the sharing stop? It is not sufficient to just share the literal

structure in question without also sharing its reachable object graph: the

internal references and objects that are used by the shared object’s methods,

and that together form the actual abstraction of the shared data structure.

But in a traditional object-oriented language the notion of “internal object

graph” is ill-defined; in principle any object, anywhere, can refer to any

other object without limit. This is unworkable for restrictions; in order for

programs which use restrictions to be correct, Every access to a shared

object graph must occur via a restriction. We cannot enforce this unless we

know that the objects guarded by a restriction are not otherwise reachable;

or at least we must know how they may be otherwise reached, and prevent

that access.

0.6.1 Existing Type Systems

Variations on this problem are quite well-studied in the programming

languages literature. We could cast this problem as a memory safety issue:

we could treat sharing an object under a restriction as manually deleting

it and then allocating a new shared object, and look to languages with
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safe manual memory management to provide the guarantees that we

want—that no references to the pre-shared state of the object may exist.

Here we could turn to projects like Cyclone and Rust, which promise

full memory safety and thus could be used as a proxy to achieve what

we want [Fluet, Morrisett, and Ahmed, 2006; Rust Programming Language

2014]. Some of these languages—Rust chief among them—have actually

recognized this connection and explicitly extended their memory safety

guarantees to thread safety, a much closer match for the property we need.

But these languages are often very low-level; they frequently either require

excessive programmer annotation or are limited in their expressive power.

These languages are easy to use when the object graph forms a forest,

but range from difficult to impossible (without unsafe code) to use when

one needs to represent a more general graph. Moreover, manual memory

management has an escape hatch we can’t rely on: the ability to simply

not delete an object when references to it might still exist. In a memory

management setting this causes leaks, but doesn’t change the semantics of

the language much. In our setting it would correspond to making certain

objects unshareable—a major, and visible, limitation.

We could also cast this problem as one of ownership; in this setting,

we could say that a shared object must “own” its reachable object graph,

and use an ownership type system to prevent external accesses to these

objects. Ownership type systems—popular in the early 2000s—tend to be

implemented via extensions to Java, making it a much closer match to the

level of abstraction we wish to offer in Gallifrey [Boyapati and Rinard, 2001;

D. Clarke, Wrigstad, et al., 2008; D. G. Clarke, Potter, and Noble, 1998].

But these systems don’t always introduce the possibility to change owners,

a feature that Gallifrey—with its ability to share and transition any object—
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will require. And systems which do allow ownership changes tend to rely

on one feature of Java that we don’t want to include—the potential for any

reference to be null [Aldrich, Kostadinov, and Chambers, 2002; Boyapati

and Rinard, 2001]. By identifying and nulling out dominating references,

these systems can effectively sever part of the object graph, ensuring that

any attempt to reference moved memory will hit an exception instead.

But this forces programmers into a pattern of treating every reference as

potentially null, clogging up code with dynamic checks or subjecting it to

unexpected runtime failures.

Many other approaches exist: capability systems which separate the

idea of access to a reference from simply holding it [Clebsch et al., 2015;

Haller and Odersky, 2010], region-based systems that generalize single

objects into object subgraphs and treat them as a unit [Fluet, Morrisett,

and Ahmed, 2006; Tofte and Talpin, 1994], or pure linear systems that

treat references as resources [Fähndrich and DeLine, 2002; Wadler, 1990]

to name just a few. But none feature the right mix of ease-of-use and

expressive power to make them a good match for static restrictions on

shared objects.

0.6.2 Isolation Types

At their core, each of these systems proposes a different way of approx-

imating precise reference tracking. Ideal reference tracking—the ability

to statically know exactly which objects are referred to by exactly which

references—would provide perfect information for memory management,

concurrency, or abstraction defense. In our setting, it would mean knowing
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precisely which objects are connected to a given restriction, and knowing

precisely which references outside of this restriction refer to objects within

it. With this information in hand we could simply make it a static error to

use those references, and have a perfect defense of Restrictions as a result.

The trouble is that inferring these relationships is undecidable in general.

To make it tractable, type systems need to employ a mix of user-provided

annotation and limitations to the form of the object graph; a huge design

space which, while heavily explored in the past, still has much ground

yet to cover. Existing solutions tend to lean heavily in one direction or

another, allowing arbitrary object access while requiring the user to reflect

possible access patterns into the types (as in much of the region work), or

sticking to relatively harsh limitations on the shape of structures permitted

so as to avoid pervasive annotations (as in Rust). No practical language

is completely at either extreme, and some efforts have been made to find

compelling middle ground.

Chapter 4 of this thesis represents a new effort to find a middle ground.

Like much of the work that has come before, chapter 4 presents a type

system which manages memory at the level of regions [Tofte and Talpin,

1994]. The set of objects in a region is statically known, but the object graph

within that region—the set of edges connecting those objects—is opaque

to the type system. Instead, the type system tracks only the references

which cross regions, ensuring that the region graph—where an edge exists

between two regions if an object in one region is connected to an object

in the other under the object graph—is statically known. When an object

is shared under a restriction, the type system must ensure that the object

graph reachable from the newly-shared object is only reachable via that

object. The type system approximates a shared object’s reachable object
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graph with its reachable region graph; it can then conservatively assume all

objects in those regions are now governed by the restriction, and prevent

any external access to them. This ensures restrictions are respected.

But in doing so, it raises the potential for significant user annotation:

we must know which objects live within each region, and we must know

how those regions are connected. While this can often be inferred within

functions, the problem of inference runs into a wall when paired with

interfaces in a traditional, Java-like programming language. It’s just not

possible to infer the region expectations of a method from its type signature

alone—which is all that is available when programming against interfaces.

All hope is not lost, however. In our domain, we primarily wish to

identify the graph of objects programmers intend to share. By their nature

these object graphs will likely already be nearly-isolated; years of experi-

ence managing objects as messages and working with traditional object

graph serialization has taught programmers that abstractions intended for

concurrency—whether as actors, monitors, or messages—ought to have

few external references, and ought to precisely control those references

which do exist. Recognizing this existing pattern, we define a notion of

a simple region as one whose reachable region graph forms a tree, and

a simple object as one whose directly accessible regions are all simple.

Programmer annotations are required only to capture deviations from

simplicity, which we anticipate will be relatively rare.

By combining this new type system with the restrictions presented

in the previous section, we can achieve our goal: writing consistent-by-

construction programs against weakly consistent replication.
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0.7 common themes

In the previous sections, we introduced three distinct ideas to conquer

the challenge of building correct distributed programs at the scale the

world requires. In MixT, we lent sanity to the current zoo of multi-store,

multi-consistency systems, reducing our problem to the more tractable

(but still difficult!) task of programming against single-consistency systems.

With Derecho, we demonstrated that leveraging emerging developments

in both network technology and programming languages yields a strongly

consistent system capable of unrivaled data processing speeds within a

single datacenter. In Gallifrey (and its associated isolation type system),

we escaped the bounds of a single datacenter and built a language for

writing consistent distributed programs which span the globe.

Uniting these approaches is a common thread: viewing replicated data

not as a single abstraction defined by its consistency, but as one part of a

program which can be correct—or incorrect—independently of the con-

sistency of its underlying replication. Rather than change the guarantees

provided by the system, the key is to change the guarantees provided by

the language we use to program it.

We see this in MixT, which assumes that programmers can use con-

sistency guarantees as a proxy for their data invariants, and provides a

typed language for transactions which ensures that these invariants are

respected. Without MixT, the presence of a single weakly consistent object

in a program is enough to threaten the consistency of the entire program;

with MixT, that potential inconsistency is contained.
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We see this even in Derecho, a system for programming against strongly

consistent replicated actors. Derecho’s core protocol—the source of both

its speed and its consistency—is itself implemented atop weakly consistent

replicated state, built in a core language which leverages monotonicity to

eliminate an entire category of errors caused by weak consistency.

And we especially see this in Gallifrey and the type system which

enables it. Gallifrey does not reason about the consistency of replicated

objects at all; through its Restrictions, Gallifrey hybridizes the monotonic

properties of Derecho’s core language with the replicated actor model of

Derecho’s surface, yielding a general-purpose language in which consis-

tency is guaranteed over arbitrarily inconsistent replication.

Correct programs can be written against weakly consistent state. Doing

so today relies on complex engineering, careful invariants, and a long

list of “best practices.” MixT, and Gallifrey aim to replace these ad-hoc

invariants and “best practices” with sound, language-based guarantees,

giving programmers clear answers to when their programs are correct

despite the underlying core of inconsistent replication. Derecho leverages

those same guarantees to rebuild the very abstractions we are replacing,

demonstrating that using a language-based approach to consistency does

not just yield more correct programs, but more performant ones as well.

0.8 a roadmap

The rest of this dissertation proceeds as follows. Each of the next four

chapters will be devoted to a deep dive into one of this dissertation’s

constituent systems: first MixT, then Derecho, then Gallifrey, and finally
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the reservation-safe type system that makes Gallifrey tick. These chapters

are self-contained, including the relevant background and related work

necessary to understand their contributions in isolation. Finally we con-

clude by viewing these systems together, and see how each may continue

to inform the development of these ideas into the future.



1
M I X T

1.1 introduction

This chapter introduces mixed-consistency transactions with MixT. Mixed-

consistency transactions allow programmers to combine the blazing speed

of weak consistency with the safety and clear semantics of strong consis-

tency. This improves on existing approaches, which support transactions

that operate with a single consistency model at a time.

Traditional strongly-consistent tools, such as strictly serializable atomic

database transactions and distributed locking, do not scale across conti-

nents; the speed of light simply isn’t fast enough for the cross-continental

round trips needed by traditional transactions. Newer weakly-consistent

tools enable lower latencies and higher availability at the price of weaker

guarantees. Evidence from both industry [Carlson, 2013; Gentz et al.,

2017; Klophaus, 2010; Lakshman and Malik, 2010; Plugge, Membrey, and

Hawkins, 2010] and academia [Crooks et al., 2016; Holt, Zhang, et al.,

2015; Sivaramakrishnan, Kaki, and Jagannathan, 2015] suggests that weak

consistency can be viable for some data, while other data needs stronger

consistency—implying that single applications can need multiple levels of

consistency.

One way to work around this is to run applications at a single con-

sistency level strong enough to enforce all required data invariants. But

33
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running with a single consistency level, as seen in prior systems [Brutschy

et al., 2017; Dongol, Jagadeesan, and Riely, 2018; Kaki et al., 2017; Xie, Su,

Kapritsos, et al., 2014; Yang, You, and Gu, 2017; Yu and Vahdat, 2000]),

can be slow [Brewer, 2010]; all operations within a transaction must be

upgraded to the consistency required by the most sensitive among them,

introducing unnecessary delay and contention for objects that only require

weak consistency. This is a fundamental problem: we need a general way

to construct transactions that access data at multiple consistency levels,

without compromising strong consistency where it is needed.

These concerns lead us to a key observation: consistency is a property of

information itself and not only of operations that use this information. Fur-

ther, the consistency with which we manipulate information should always

match or exceed the consistency at which we store it. This observation

forms the basis of mixed-consistency transactions. Each mixed-consistency

transaction can operate over any and all data, even if this data is stored

with varying consistency guarantees. Despite this expressivity, we main-

tain the consistency guarantees required by each data object by preventing

less-consistent information from influencing more-consistent data. Mixed-

consistency transactions are atomic: no operations inside a transaction

become visible outside the transaction until all operations do.

In implementing mixed-consistency transactions, we uncover a further

complication: engineers at major companies frequently find themselves

writing distributed programs that mix accesses to data from multiple

existing storage systems, each with distinct consistency guarantees [Brown,

2017]. It is unrealistic to assume that data can be freely migrated into

ever-newer and more capable storage systems, or that all applications

can be written against a single unified system; we therefore want to
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operate against multiple backing stores within the same mixed-consistency

transaction.

MixT addresses these challenges in a single solution: a domain-specific

language for mixed-consistency transactions. In MixT, persistent data

and operations at various stores can be accessed with strong guarantees

(§1.3). To ensure the semantic guarantees of mixed-consistency transac-

tions, weaker-consistency information should avoid influencing stronger-

consistency information. To prevent this influence, MixT views consistency

as a property of data, treating consistency as a form of data integrity [Biba,

1977] expressed as labels on types in the language. Static analysis of

information flow [Sabelfeld and A. C. Myers, 2003] then ensures that con-

sistency guarantees cannot be violated by exposure to objects with weaker

consistency.

The MixT language implements mixed-consistency transactions using

three novel mechanisms (§1.4–1.5):

• Compile-time information flow control ensures that the consistency

of data is never weaker than the level described by its storage loca-

tion.

• Using information flow analysis, the code of each transaction is

automatically split into sub-transactions for each consistency level,

while preserving atomicity.

• A lightweight run-time mechanism ensures transactional atomic-

ity, even between sub-transactions executing on multiple mutually

unaware backing stores.

MixT works on top of stores’ existing transactional mechanisms, without

changing the representation of existing data, allowing existing applications
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to operate unmodified alongside MixT applications. And MixT can be

easily adapted to a new store, by inserting the store’s consistency level

into MixT’s consistency lattice and providing bindings to custom data

operations specific to that store.

As we show experimentally (§1.9), mixed-consistency transactions per-

form well. MixT enables significant speedup vs. serializable transactions

by exploiting weak consistency, without losing the guarantees sacrificed

by current systems when consistency levels mix.

1.2 motivation

1.2.1 A Running Example

Suppose we are building a scalable group messaging service called Message

Groups. This service allows users to join groups and to post messages to all

members of any group they have joined. For low-latency communication,

application servers are deployed across the world, with data replicated

across these servers.

Communication latency between these servers makes it difficult to keep

the replicated data fully consistent without degrading user experience.

Fortunately, there is no need to enforce a global, total order on displayed

messages. It is only necessary to respect potential causality, so that mes-

sages precede their responses. We therefore geo-replicate user inboxes at a

weaker consistency level, causal+ consistency, which respects causality but

does not guarantee a total order [Lloyd et al., 2011].
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However, other data in this application requires stronger consistency.

The membership of users in various groups should be consistent world-

wide so that all servers agree on who is supposed to receive which mes-

sages. Therefore, the set of members of each group is placed at a store sup-

porting linearizable transactions, which ensure serializability and external

consistency [Corbett et al., 2013; Herlihy and Wing, 1988; Papadimitriou,

1979]. Latency to this single store is necessarily much higher for many

users than latency to their own inboxes.

1.2.2 The Need For Mixed-Consistency Transactions

To see the pitfalls inherent to this naive mixing of consistency levels,

consider how Message Groups might implement logged message delivery,

using the code in fig. 1.1. There is a linearizable list of members named

users to whom a message post should be sent. Each member in users

has a causally consistent inbox. For regulatory compliance, the sending of

messages is logged (via log.append). The log does not even require causal

consistency; instead, we might replicate it at eventual consistency [D. B.

Terry, Theimer, et al., 1995], which requires only that reads converge after

a sufficiently long quiescence. All mutations, including append and insert,

are replicated across continents.

However, the simple loop in fig. 1.1 does not address concurrent modifi-

cation to the data. Suppose that a thread concurrently modifies users while

another thread is executing fig. 1.1. Without care, this concurrent modi-

fication might invalidate fig. 1.1’s iterator; at best, it is unclear whether
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var iterator = users,
while (iterator.isValid()) {
log.append(iterator->v.inbox.insert(post)),
iterator = iterator->next

}

Figure 1.1: Naive code for sending messages. Corrected MixT code is found in
fig. 1.4.

the new member will receive a message. As written, there is no reason to

expect the result of this execution to be atomic, isolated, or even complete.

Clearly, some form of concurrency control is needed. We might change

over to a recent system such as Quelea [Sivaramakrishnan, Kaki, and

Jagannathan, 2015] or Salt [Xie, Su, Kapritsos, et al., 2014], which provide

both fully atomic transactions and multiple consistency levels. But these

systems can only execute a given transaction at a single consistency level.

In these systems, all data in the Message Groups example would effectively

be upgraded to linearizability. There would be no performance benefit from

having a weakly consistent inbox and log; message delivery performance

would likely be unacceptable.

Alternatively, we could partition our data onto three distinct systems,

each optimized for the appropriate consistency level. If we had a causal

store such as TaRDiS [Crooks et al., 2016] that supports interactive atomic

transactions, we could start a separate simultaneous transaction at each

system. This would achieve the desired performance, but the implicit

interactions between these transactions could create bugs. For example, if

another process updated the membership list while mail was being sent,

the linearizable transaction might abort and roll back, restarting the loop.

Without code to explicitly roll back the other concurrent transactions—

which may not even always be possible—some users could then receive
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the same message a second time. We might think to fix this problem by

adding a “delivered” flag to each message, to be set when the message is

sent. If the flag is linearizable, transaction rollback can reset its value and

messages will still be sent twice. If the flag is causal, the programmer has

to be careful to update it only at the end of the causal transaction, because

causal updates might not be rolled back if the transaction retries, leading

to lost messages. And even if we were to carefully solve this interaction,

there is still the matter of the logger, a component that requests even

weaker consistency (and expects correspondingly faster access).

Thus, this transaction cannot be naturally implemented using each

underlying store’s mechanisms in isolation. It requires a new form of

mixed-consistency, mixed-location transaction not supported by any existing

system, with new run-time mechanisms for atomicity across different

consistency levels.

1.2.3 Mixing Consistency Breaks Strong Consistency

There is a reason that existing systems choose a single consistency level

for each transaction. Causal consistency and linearizability offer well-

defined consistency guarantees, but trying to mix these levels in the same

application can break the guarantees that both levels claim to offer, even

if all the issues in the previous section were solved. Some transactions

simply are not safe to run under mixed consistency. To see why, consider

the following example.

Suppose we run a contest to advertise Message Groups. Users are

divided into two teams; team A sends messages to mailbox a, and team B
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if (a.inbox.size() >= 1000000 &&
b.inbox.size() < 1000000) { //weak condition

a.declare_winner() //strong effect
} else
if (a.inbox.size() < 1000000 &&

b.inbox.size() >= 1000000) {
b.declare_winner()

}

Figure 1.2: Contest logic inside the mail delivery transaction. Corrected MixT
code is found in fig. 1.15.

sends messages to mailbox b. The first team to send 1,000,000 messages is

declared the winner.

To implement this contest, we extend the existing transaction for deliv-

ering mail with a few lines of code shown in fig. 1.2. After running the

contest, we may be surprised to discover that the code has not declared

a unique winner; both teams A and B are simultaneously declared the

winner!

This code has a fundamental problem. To avoid slowing down the core

functionality of message delivery, the guard condition uses data (the inbox

sizes) stored with only causal consistency. Since the guard is evaluated with

causal consistency, nothing guarantees that the function declare_winner()

is invoked only once. But the function declare_winner() manipulates

only data with linearizable consistency; it is not designed to deal with the

potential for multiple re-executions. During a partial network partition,

every single message receipt to either team could cause the winner to

switch, as the causal replica receiving messages for a may not be able to

propagate events to the replica receiving messages for b (and vice-versa).

This causes each team to believe their inbox alone has reached the target

size.
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The essence of this mistake is that more-consistent data (the declared

winner) is influenced by less-consistent data (the inbox size). This inappro-

priate influence means the developers of declare_winner() would have

to add complex code to ensure its assumptions hold under weak consis-

tency guarantees, even though declare_winner() does not access weakly

consistent data itself.

The issue of weakly consistent data influencing strongly consistent

computations is fundamental to the semantics of consistency. Even within

a linearizable transaction, the influence of weakly consistent data on

program control flow can effectively weaken the isolation level of the entire

transaction. MixT uses information flow analysis to flag such influences at

compile time, disallowing this example code. As discussed in section 1.7,

MixT also allows intentional weakening of this restriction.

1.3 mixt transaction language

We solve the problems introduced in the previous section with MixT, a

new domain-specific language (DSL). To support a variety of underlying

stores in a uniform way, including key–value stores, databases, and file

systems, MixT offers a high-level embedded transaction language that is

straightforward to adapt to new stores.
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x ∈ Var f ∈ Operation
⊕ ∈ Binop 	 ∈ Unop

(Location) m ::= x | ∗ e | e.x | e -> x
(Expr) e ::= m | e1 ⊕ e2 | 	 e | e0. f (e1, . . . , en)

(Stmt) s ::= var x = e | m = e | return e
| while (e) s | if (e) s1 else s2 | {s1, . . . , sn}

Figure 1.3: MixT surface syntax. Certain built-in operations are omitted for clarity
of exposition.

1.3.1 MixT Language Syntax

fig. 1.3 gives the surface syntax of the MixT language. Because MixT is

embedded in C++, its syntax and semantics, though different from those

of its host language, are designed to be unsurprising to C++ programmers.

MixT is relatively expressive; for example, it has control structures

like conditionals and loops. Despite supporting real control structures,

MixT transactions are fully atomic when the underlying stores support

atomic transactions. In particular, all transaction effects become visible at

once, and transactions operate against stable snapshots at each store. Like

C++, the MixT language has mutable locations, which can be either local

variables or fields of objects.

Though they are not shown explicitly in fig. 1.3, handles are a key

abstraction of MixT. Handles behave like pointers to remotely stored

persistent data; they can be dereferenced to access the underlying data

(with the operators * and ->), and they can be aliased by assignment.

Handles also support the invocation of operations on data. Given a

handle e0 to a receiver object, the expression e0. f (e1, . . . , en) invokes a
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class user {
2 Handle<set<string>, causal, supports<insert>> inbox;
};

class group {
RemoteList<Handle<user, causal>, linearizable> users;

7 Handle<Log, eventual, supports<append>> log;

mixt_method(add_post) (post) mixt_captures(users,log) (
var iterator = users,

10 while (iterator.isValid()) {
log.append(iterator->v.inbox.insert(post)),
iterator = iterator->next

}
)

Figure 1.4: MixT message delivery implementation (§4.2). MixT code (lines 8–14)
is colored green; C++ code is blue.

custom operation named f, provided by the underlying store of the receiver.1

Exactly which operations are supported depends on the store. For example,

many stores provide specialized operations for manipulating sets, but even

SQL queries can be exposed as operations.

1.3.2 A MixT Example Program

As an example of MixT code used within a larger program, the message

delivery transaction of section 1.2.2 is shown in fig. 1.4. To distinguish MixT

code from surrounding C++ code, MixT code is colored green, whereas

C++ code is blue.

1 The store may specify whether its parameters should be treated as opaque handles,
arbitrary values, or dereferenced handles to other objects on this store. The arguments
e1, ..., en are passed as values by default, except when the store requests otherwise, at
which point they will be dereferenced (resulting in a run-time error if these arguments
refer to handles on the wrong store).
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Most of this code should look familiar to a C++ programmer; outside

the transaction, it merely defines classes that contain library types, such as

the MixT library type RemoteList, as fields.

At the heart of MixT are transaction blocks, signified by the mixt_method

declaration. For example, at lines 8–14 is the now-familiar transaction for

message delivery, expressed as a method add_post() of the C++ class

group. This method can be invoked from any context without the need to

explicitly start a transaction; its parameter post is automatically inferred

to be a string.

In this transaction, the expressions iterator, inbox, users, and log

are all handles for state on remote stores. The type Handle<T, L, ...>

is the C++ representation of a MixT handle for data of type T, stored at

consistency L. An object of this class acts as an opaque representation of

a persistent resource. Any supported custom operations appear in the

third and following argument positions. For example, inbox (line 2) is

a set of strings, stored at causal consistency, with a custom operation

insert for adding new items to the set. It is the job of the causal store

to ensure that insert operations from different clients are merged with

causal consistency.

MixT offers some useful data structures as library types. For example,

the type RemoteList, used at line 6, is a persistent linked list that stores

its spine at a specified consistency level (here, linearizable).
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class Handle<Type, Label, Operations...> {
Type get(TransactionContext);
void put(TransactionContext, Type);
bool isValid(TransactionContext);
Type clone(TransactionContext);

};

class DataStore<Label> {
TransactionContext beginTransaction();

};
class TransactionContext {

bool commit();
DataStore store();

};

Figure 1.5: Handle and DataStore interfaces.

1.3.3 MixT API

As much as possible, MixT operates as a shim above existing stores,

reusing their existing mechanisms for replication and data consistency. It

is straightforward to add support for a new store, as long as it offers the

necessary functionality; one simply implements three interfaces, Handle,

DataStore, and TransactionContext, shown in fig. 1.5.

The Handle interface consists of a simple get/put/check API for access-

ing underlying data, a set of routines for supporting marshaling, and a

set of routines for accessing and using the store from which the Handle

originated. Much of this functionality can be automatically generated

by the MixT libraries at compile time; fig. 1.5 only includes routines the

programmer must implement.

A DataStore serves as an entry point to the underlying storage system;

it is always associated with a specific consistency label (level) and a specific

implementation of Handle. The only requirement from the DataStore API

is the method beginTransaction(), which must create a new transaction
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class CausalStore : public DataStore<causal> {
template<typename T>
class CausalObj : CausalHandle<T> {...};
template<typename T>
mixt_operation(insert) (CausalObj<set<T>>&, T&) {...}
...

};

Figure 1.6: Implementing a causal store in a host C++ program.

represented by a TransactionContext object. The TransactionContext

can be used to commit or abort the transaction interactively, and can

be extended to supply store-specific transaction interactions options. A

DataStore may also implement any number of custom operations, rang-

ing in complexity from creating new remote objects to processing SQL

statements.

fig. 1.6 illustrates how a causal store with a custom operation insert

can be implemented. Custom operations are declared within classes im-

plementing DataStore by using the mixt_operation keyword. In this ex-

ample, the operation insert is declared to take a remote set and a local T,

matching the types on which it was invoked in add_post (fig. 1.4). Unlike

mixt_method, mixt_operation does not declare a C++ method, and can

only be called from within a MixT transaction. Within a transaction, op-

erations dynamically dispatch to the appropriate Handle and DataStore;

to facilitate this dispatch, every Handle’s type also includes a static list of

operations which its implementation supports.

MixT custom operations provide a method-like syntax for invoking

operations directly on handles to remote data, as with insert in fig. 1.4.

It would be a mistake, however, to imagine that they are limited only

to “method-like” invocations directly on remote data; they are flexible

enough to expose arbitrary database functionality directly to a MixT
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transaction. For example, one could create a Handle<DB>, with matching

mixt_operations for interfacing directly with the underlying database’s

raw API. If the database exposed more stateful functionality, such as locks,

a Handle<DBLock> could be used to manage each individual lock.

1.4 mixed-consistency transactions

section 1.2 shows that even seemingly trivial code can require the imple-

menter to reason very carefully about the interactions between different

consistency levels in the presence of possible transaction aborts. The com-

plexity of this reasoning can easily become overwhelming. MixT tames

this complexity by providing semantics for mixed-consistency transactions

(§1.4.1). MixT’s transaction support can provide atomic execution for sec-

tion 1.2.1’s message delivery transaction (§1.4.5), and its type system will

detect the fundamental errors of section 1.2.3’s contest (§1.4.3). A more

detailed look at MixT’s transactions comes in section 1.5.

1.4.1 Defining Mixed Consistency

We now address a fundamental question: what are the desired semantics

of mixed consistency? We choose the standard approach used for shared-

memory consistency [Herlihy and Wing, 1988], in which a consistency

model is characterized as a trace property: that is, as the (possibly infi-

nite) set of execution traces that do not violate the consistency model’s

guarantees. In principle, we can then verify whether a program execution

satisfies a given model by checking whether its trace is in the set.
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In mixed-consistency transactions, objects labeled with some consistency

model should enjoy at least the guarantees of that model. For example, in a

system with both eventual consistency and linearizability, traces involving

any subset of objects should adhere at least to eventual consistency, and

traces involving only its linearizable objects should respect linearizability.

Put another way, an observer who accesses only linearizable objects should

be unable to determine that there are any eventually consistent operations

in the system.

The strength of consistency models can be characterized in terms of

the possible behaviors of programs. The behaviors of the programs form

a set of admitted traces T. The meaning of a consistency level ` is given

by its consistency model, a set of traces T` ⊆ T. A model T` is stronger

than a model T`′ when T` ⊆ T`′ ; T` provides more guarantees than T`′ . All

consistency models must include the empty trace. We assume there is a

lattice of consistency levels L ordered by strength. If a consistency level

` is stronger than or equal to another, `′, we write ` v `′. Consistency

models are ordered by inclusion consistently with the ordering on L:

` v `′ ⇐⇒ T` ⊆ T`′ , T`t`′ = T` ∪ T`′ , and T`u`′ = T` ∩ T`′ .

Each trace t ∈ T is a sequence of events e. An event e is a 5-tuple

(a, o, `, v, S) containing a, the action corresponding to this event; o, the

exact memory location or object referenced by this event; `, the consistency

level of the store for this event’s location; v, a tuple of any values processed

by this event; and S, the client session in which this event occurred. Given

such an event, we define consistency((a, o, `, v, S)) = `. For example, the

program x = 4; x = x + 1, wherein x resides on a store with consistency

`, admits the trace “(write, x, `,(4), S); (read, x, `, (4), S); (write, x, `, (5),

S)” when executed in session S.
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Given a trace t, the events relevant to a given consistency level ` are

those whose consistency level is at least as strong. We write t � ` to denote

the trace containing such events:

Definition 1.4.1 (Trace projection).

t � ` = [e | e ∈ t ∧ consistency(e) v `]

Definition 1.4.2 (Mixed consistency). A trace t exhibits mixed consistency if

it satisfies every consistency model T` when projected onto that consistency

level:

∀`, t � ` ∈ T`

This definition is sensible even when working with incomparable con-

sistency models; because consistency models form a lattice [Viotti and

Vukolić, 2016], there is always some minimum consistency model onto

which all events can be projected.

Definition 1.4.2 can also be adapted to transaction isolation levels [Beren-

son et al., 1995] by considering traces containing explicit events that begin

and end transactions. A full formalization is found in section 1.6.

1.4.2 Noninterference for Mixed Consistency

In section 1.4.1, we proposed a definition for mixed consistency based on

the approach used for shared-memory consistency. But this approach

can hide influence: common consistency models, expressed in terms of
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reads and writes to shared registers, are not strong enough to capture why

each read or write occurs. To capture this influence directly, we look to

noninterference, a semantic property common in the security and privacy

literature. Noninterference describes programs as secure if, when given a

policy lattice of security labels, program behavior at one point in the policy

lattice cannot influence behavior at levels that are lower in the lattice or

incomparable [Goguen and Meseguer, 1982; Sabelfeld and A. C. Myers,

2003]. In particular, when using noninterference to enforce privacy or

confidentiality, two runs of a program that differ only in secret inputs

should have identical publicly observable behavior. Noninterference is the

correctness condition normally associated with information flow security

(section 1.4.3).

We start by taking this traditional approach, replacing secret with

“weakly consistent” and public with “strongly consistent”; in other words,

we determine if any “weakly consistent” data can influence any “strongly

consistent” data by comparing the possible runs of transactions. We can-

not simply compare pairs of runs, however, because systems built using

MixT are inherently concurrent and nondeterministic; two runs may differ

simply as a result of acceptable nondeterminism. We instead consider sets

of possible runs generated by keeping the deterministic program inputs

fixed, but varying the nondeterministic choices made by the program. We

say that weakly consistent data has an improper influence in this program

if varying weakly consistent data introduces new strongly consistent data

into the set. Put another way, varying weakly consistent data should only

affect strongly consistent values in ways already permitted by the inherent

nondeterminism of the system. This possibilistic notion of information flow

is called generalized noninterference [McCullough, 1987].
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Possibilistic security has been shown to be problematic in its original

setting of confidentiality, because information can be leaked via refine-

ment [Smith and Volpano, 1998; Zdancewic and A. C. Myers, 2003]. In the

context of consistency and other integrity-like properties, it does not seem

to be a major concern [Liu and A. C. Myers, 2014].

1.4.3 Consistency as Information Flow

To enforce generalized noninterference, we treat consistency as a form

of information-flow integrity [Biba, 1977] and use an information-flow

type system [Sabelfeld and A. C. Myers, 2003] to outlaw bad programs.

Previous work [Smith and Volpano, 1998] has shown that generalized

noninterference is soundly enforceable using this style of security type

system. In such a type system, values are associated with a label drawn

from a lattice, which in this case is a lattice of consistency levels. The

strongest possible consistency is the lowest point in the lattice, denoted

⊥, and the weakest consistency is >. To enforce consistency, information

should not be influenced by other information whose consistency is not

at least as strong. Therefore, as in other work on information flow, legal

information flow is upward in the lattice.

In the case of the buggy contest in section 1.2.3, the transaction

creates a banned information flow from the inbox size (weak) to the

declare_winner() operation (strong). In information-flow terms, this is

an implicit flow [Sabelfeld and A. C. Myers, 2003]. The type system of

MixT (section 1.5.2) statically catches invalid flows, whether implicit or

explicit, and rejects unsafe transactions.
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1.4.4 Transaction Splitting

We now turn to the difficult task of implementing noninterfering trans-

actions against multiple backing databases. Consider again the message

delivery code in fig. 1.4. This code is noninterferent and is therefore safe

in principle, but because it involves three different consistency levels, it is

nonetheless quite difficult to implement, as discussed in section 1.2.2.

MixT implements mixed-consistency transactions like this one by auto-

matically splitting their code into a single sub-transaction per involved

store. A key insight is that safe splitting is always possible because in-

formation flow restrictions prevent weakly consistent data from affecting

strongly consistent data either directly or indirectly within a transaction.

Hence, transactions can be split so that their stronger-consistency parts are

executed earlier. This allows each sub-transaction to be safely re-executed

in the case of a transaction abort, avoiding the pitfalls inherent to parti-

tioning data across systems outlined in section 1.2.2. This splitting does

not automatically preserve atomicity, the subject of section 1.4.5.

In general, a split transaction consists of a sequence of syntactically

separate transaction phases. For each consistency level in the transaction,

there is a single phase for all operations with that consistency level. MixT

determines which data are communicated between phases, preserving

only the information necessary to execute subsequent phases.

For example, the message delivery transaction is split into linearizable,

causal, and eventual phases (in order of decreasing strength of consis-

tency guarantees), corresponding to the consistency levels used by the

transaction.
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The most challenging aspect of transaction splitting is the treatment

of loops, which makes splitting quite different than in previous work on

automatic transaction splitting [Cheung et al., 2012; Zdancewic, Zheng,

et al., 2002]. Like all expressions, each loop’s condition must be evaluated

within a single phase, but the body of the loop might contain statements

that execute in different phases. A loop spanning multiple consistency

levels, such as in the message delivery transaction, must therefore be

re-executed for each consistency level.

The information-flow type system ensures that all statements that affect

the loop’s condition occur at the first and strongest phase in which the

loop appears. In this first phase, MixT explicitly records the results of each

conditional test for the loop, replaying them during the loop execution

in subsequent phases. For more detail about this process and a worked

example, see section 1.5.3.

1.4.5 Whole-Transaction Atomicity

Static transaction splitting produces a single sub-transaction per underly-

ing store, allowing us to inherit the guarantees of isolation and atomicity

provided for all operations on that store. Splitting does not, however, guar-

antee atomicity for the entire transaction, since commits to stronger stores

happen before commits to weaker ones. To ensure atomicity, MixT pro-

grams must be prevented from observing the effects of partially committed

transactions. When atomicity is guaranteed by at most one of the stores to

which a transaction writes, no extra machinery is needed. However, for
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the rare transaction that writes to multiple atomic stores, we introduce

witnesses, which lock affected objects.

During each phase’s execution, MixT creates a special write witness

object for each mutation, indicating that a lock has been acquired on the

object being mutated. At the end of each phase, MixT creates a single

commit witness, a special object which indicates that all locks acquired

during this transaction have been released. Only one witness is produced

per transaction, but a copy of it is sent to every store on which writes

were performed. If a MixT transaction encounters a write witness, it must

suspend execution until it encounters the corresponding commit witness.

The witness mechanism ties together phases of split transactions across

mutually unaware systems. By creating an explicit object during each trans-

action and blocking future progress until it has appeared, we guarantee

atomicity; the full transaction will be visible to all future transactions.

The witness mechanism should impose relatively little overhead because

its use should be rare. Further, several optimizations (section 1.8.1) can

reduce its overhead. The performance evaluation (section 1.9) shows that

a complex MixT program can achieve reasonable throughput even when

witnesses are used. We revisit witnesses in more detail in section 1.5.4;

formal arguments regarding the correctness of witnesses can be found in

section 1.6.
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(Location) m ::= x | m.x
(Expr) e ::= m | x1 ⊕ x2 | 	 x | x0. f (x1, . . . , xn)

(Stmt) s ::= var x = e in s | remote x = e in s
| m = x | return x | while (x) s
| if (x) s1 else s2 | {s1, . . . , sn}

Figure 1.7: MixT flattened syntax.

1.5 formalizing the mixt language

1.5.1 Desugared Language

To facilitate transaction splitting, MixT’s surface syntax is translated to a

“flattened” language whose syntax appears in fig. 1.7. Where the surface

and flattened languages coincide, they share the same semantics. There

are a few notable changes from the surface language. All expressions are

flattened by the compiler using standard techniques [Sabry and Felleisen,

1993]. The pointer-like syntax *e and e->x is replaced by the ability to

declare remote variables bound to handles. Semantically, remote variables

directly correspond to the referenced location on an underlying store.

Updates to these variables are reflected at the store, and uses of these

variables query the store directly for their value. Unlike in the surface

language, both var and remote introduce explicit scopes for their bindings.
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∆ | Γ | pc ` e : `
Γ ` e : τ ∆, xV : ` | Γ, xV : τ | pc ` s : `2 x 6∈ Γ x 6∈ ∆

∆ | Γ | pc ` var x = e in s : `

Γ ` e : Handle〈τ, `1〉 ∆ | Γ | pc ` e : `2
∆, xR : ` | Γ, xR : τ | pc ` s : `′ `1 t `2 v ` x 6∈ Γ x 6∈ ∆

∆ | Γ | pc ` remote x = e in s : `

∆, x_ : ` | Γ | pc ` e : `
∆, x_ : ` | Γ | pc ` x = e : `

remote-read

pc v `

∆, xR : ` | Γ | pc ` x : `
∆, xV : ` | Γ | pc ` x : `

∆ | Γ | pc ` e : `′ `′ v `

∆ | Γ | pc ` e : `
∆ | Γ | pc ` e : ` ∆ | Γ | pct ` ` s : `′

∆ | Γ | pc ` while (e) s : `

∆ | Γ | pc ` e : ` ∆ | Γ | pct ` ` s1 : `′ ∆ | Γ | pct ` ` s2 : `′

∆ | Γ | pc ` if (e) s1 else s2 : `

pc v ⊥ ∆ | Γ | pc ` e : `
∆ | Γ | pc ` return (e) : >

Figure 1.8: Selected consistency typing rules for MixT. The labeled remote-read

rule is unusual. Also unusually, statements have explicit labels; these
are used to determine the phase in which the statement should run
during transaction splitting.
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1.5.2 Statically Checking Consistency Labels

Consistency is enforced in MixT by statically checking information flow

using a largely standard type system for static information flow [Sabelfeld

and A. C. Myers, 2003].

Figure 1.8 gives selected consistency typing rules for the language.

Ordinary rules for typing judgments Γ ` e : τ are not presented because

they directly use the C++ type system; the presented rules are only for

consistency judgments ∆ | Γ | pc ` e : `. Environments ∆ and Γ keep track

of the labels and types of variables, respectively, with local and remote

variables distinguished lexically by subscripts V and R. The label pc (for

program counter) bounds the consistency of control flow.

The rules assign each statement and expression a consistency label ` that

reflects the weakest consistency of any information used to compute it. The

label on statements, used during transaction splitting, is derived directly

from subexpressions and is unaffected by substatements. During static

checking, consistency originates from the consistency labels on handles,

which derive from their stores. Variables captured from the environment

outside of the transaction are labeled with the strongest (⊥) consistency;

all other labels are automatically inferred from the transaction code.

One non-standard aspect of the rules is that all accesses to remote-bound

variables are treated as effectful, requiring the same pc consistency to read

a remote location as to write it (remote-read). This restriction is imposed

for correct transaction splitting, to enforce the necessary condition that all

remote operations at a single consistency level execute before any remote

operations at a weaker level.
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(Expr) e ::= . . . | rand() | peek(x)
(Stmt) s ::= . . . | release_all(n)

| acquire(x, n, `1, . . . , `n)

| advance(x) | advance remote(x)
(Phase) p ::= s`

(Transaction) t ::= T {p1; p2; . . . ; pn}

[[remote x = e in s : `]]` , remote x = e in [[s]]`

` 6 v`′

[[remote x = e in s : `]]`′ , [[s]]`′

` v `′

[[remote x = e in s : `]]`′ , {advance binding(x), [[s]]`′}

[[while (e) stmt : `]]` , while (e) [[stmt]]`
` 6v`′

[[while (e) stmt : `]]`′ , {}

` 6= `′ ` v `′

[[x = e : `]]`′ , advance(x)

` 6= `′ ` v `′

[[x : `]]`′ , peek(x)
[[x : `]]` , x

L = {`1, `2, . . . , `n}
S [[stmt]]L , T {[[stmt]]`1 ; [[stmt]]`2 ; . . . ; [[stmt]]`n}

Figure 1.9: Selected transaction splitting rules.

Omitted from fig. 1.8 is the rule governing endorsement, discussed in

section 1.7.

1.5.3 Transaction Splitting

Fig. 1.9 gives selected rules for splitting transactions into phases based

on consistency labels. The translation [[·]]` generates the code for the

transaction phase at consistency level `.



1.5 formalizing the mixt language 59

var iterator = users, // Phase: strict serializability
var loopindex = iterator.isValid(),
while (loopindex) {
loopindex = iterator.isValid(),
var temporary0 = iterator->v,
iterator = iterator->next

}

advance(loopindex), // Phase: causal consistency
while (loopindex) {
advance(loopindex),
advance(temporary0),
var temporary1 = peek(temporary0).inbox.insert(post)

}

advance(loopindex), // Phase: eventual consistency
while (loopindex) {
advance(loopindex),
advance(temporary1),
logger.log(peek(temporary1))

}

Figure 1.10: The message delivery transaction after splitting, lifted back to the
surface syntax.

Recall that each statement in the flattened language is associated with

exactly one consistency level. Intuitively, transaction splitting preserves a

statement in phase ` when the statement’s label matches ` and otherwise

omits it from the phase. However, statements associated with a nested

scope, such as while and var, may execute their contained statements in a

different phase.

Once some variable x is introduced in a phase, it may be used—but not

assigned—in any later phase. During the phase in which x is introduced,

every binding and assignment to x is stored in an implicit iterator. During

subsequent phases, this iterator is used to replay x’s previous values. In

these subsequent phases, uses of x are replaced with peek(x) expressions,

which return the current value of x’s implicit iterator. Mutations to x are

replaced with advance(x), which advances x’s implicit iterator. Remote-



60 mixt

bound variables require the additional advance binding(x) construct.

Recall that the remote x = e construct binds x as an alias to the remote

state described by e. If this binding appears in a loop, then the value of

e may shift, causing x to be bound to a series of remote locations. The

advance binding(x) statement cycles through these, while the advance(x)

statement cycles through assignments to the remote object itself. These

and other syntactic extensions required by transaction splitting are shown

in fig. 1.9.

For example, the split transaction generated from the message delivery

transaction contains three non-local phases, one for each distinct consis-

tency level used, as shown in fig. 1.10 (for clarity, the code is presented in

the surface syntax). Updates to the freshly generated variables loopindex,

temporary1, and temporary0 are logged; the expression peek(x) accesses

an iterator over the previous values of x, and the expression advance(x)

advances this iterator. Neither of the original variables iterator and

users is necessary for any subsequent phase, so they are discarded upon

successful commit of the first phase.

1.5.4 Enforcing Atomicity in Split Transactions

After transaction splitting, the MixT compiler augments the split transac-

tion with code to create witnesses. First, the transaction generates a new

variable wit (as shown in the GENERATE rule of fig. 1.11) containing the

uniquely-generated name of our commit witness2. Next, it inserts the state-

ment acquire(x,wit,phases) before all mutative operations (ACQUIRE

2 Our implementation handles name generation by selecting a random 63-bit number; these
names are short-lived and can be garbage collected within minutes, keeping the probability
of collision orders of magnitude below the probability of catastrophic hardware failure.
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GENERATE
pi, pj ∈ P .pi 6= pj ∧writes(pi) ∧writes(pj) P = [p1, . . . , pn]

[[[p1, . . . , pn]]] , [var wit = gensym()⊥, [[p1]]2, . . . , [[pn]]2]

RELEASE
[[phasen]]2 , [[phasen]]3; release_all(wit)

ACQUIRE1

x is remote-bound

[[x = e]]3 , x=e; acquire(x,wit,P)

ACQUIRE2

[[x.f(. . .)]]3 , x.f(. . .); acquire(x,wit,P)

Figure 1.11: Selected rules for witness modification. P is the list of transaction
phases generated during splitting of a MixT transaction, and writes
is a boolean function indicating whether a write is performed in a
phase. Semicolon separates instructions.

rules). This statement creates a write witness, writing it alongside x. At

the end of the phase, the compiler appends release_all(wit) (RELEASE

rule) , which writes the commit witness itself. Witnesses are only re-

quired for transactions which perform writes to remote storage in multiple

phases (captured in the precondition to the GENERATE rule). Witnesses

are required to achieve the mixed-consistency property of crefsec:mixed-

consistency-def for non-compositional models, and are essential to atom-

icity; however, they may be manually disabled. If witnesses are disabled,

then MixT can guarantee mixed-consistency for compositional models (and

the compositional fragments of non-compositional models), and supplies

at most the READ COMMITTED isolation level.

As an example, we present witness generation for the familiar message

delivery transaction in fig. 1.1. A new first phase contains witness genera-

tion; in all phases, each mutative operation is immediately followed by a
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var wit = rand()

var iterator = users, // Phase: linearizable
var loopindex = iterator.isValid(),
while (loopindex) {
loopindex = iterator.isValid(),
var temporary0 = iterator->v,
acquire(temporary0,wit,linearizable,causal,eventual),
iterator = iterator->next

}
release_all(wit)

advance(loopindex), //Phase: causal consistency
while (loopindex) {
advance(loopindex),
advance(temporary0),
var temporary1 = peek(temporary0).inbox.insert(post),
acquire(temporary1,wit,linearizable,causal,eventual)

}
release_all(wit)

advance(loopindex), //Phase: eventual consistency
while (loopindex) {
advance(loopindex),
advance(temporary1),
logger.log(peek(temporary1))

}
release_all(wit)

Figure 1.12: The message delivery transaction after witness insertion, lifted back
to the surface syntax
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call to acquire. At the end of each phase, MixT copies the commit witness

to the store via release_all.

The purpose of witness transformation is simple: each call to

acquire(x, wit, . . . ) acquires a logical lock on x, which is released

by the corresponding call to release_all(wit). Any transaction which

observes the “lock acquire” event (acquire) must now wait for the corre-

sponding “lock release” event (release_all) before proceeding at each

participating phase.

Witnesses are implemented as simple objects stored directly on remote

stores. Write witnesses contain the locations of all corresponding commit

witnesses and a list of all consistency levels involved in the transaction,

while commit witnesses are empty objects.

Additional run-time checks beyond those inserted by fig. 1.11 are re-

quired to check for witnesses. At run time, whenever MixT attempts to

read a remote-bound value, it also reads that value’s potential witness

location, checking for a write witness. If it finds one, it adds the discovered

commit witness’s location to a witness worklist for each phase listed in the

write witness.

Before MixT begins executing a phase p, it first iterates through p’s

witness worklist. For each commit witness w in the worklist, MixT polls

p’s store until w becomes available, and then removes w from the worklist.

As described in section 1.8.2, this polling loop occurs on the remote store

itself. Once the commit witness has appeared on all replicas, it may be

safely removed from the store; the specifics of this process are found in

section 1.8.1.

These additional run-time checks prevent a transaction from observing

its own causal past; if a certain transaction phase has witnessed a past
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class DataStore<Label> {
...
bool exists(Name name);
Handle<...> existingObject(Name name);
Handle<...> newObject(Name name);

};

Figure 1.13: Enhanced DataStore interface for witnesses.

transaction, then we must ensure that all future transaction phases can

also witness that transaction.

To support witnesses, we extend the requirements on underlying stor-

age to include a key–value API through which witnesses can be named

(fig. 1.13). These APIs take the form of type constraints; the return and

parameter types must support certain operations, but do not need to be a

precise MixT-specified type.

Note that using witnesses does not cause the resulting transaction to be-

come fully serializable; if a weak consistency level allows stale reads, then

stale reads can still occur during the weak phase of a mixed-consistency

transaction. A mixed transaction might fail to read values committed by a

previous fully weak transaction. Even with witnesses, the code in fig. 1.2

remains incorrect. Also, atomicity is only guaranteed when the underlying

store provides it; consistency levels which do not have a useful notion of

atomicity—for example, eventual consistency—therefore do not employ

write or commit witnesses.
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1.6 correctness

1.6.1 Mixed Isolation

To argue correctness of mixed-consistency transactions, we must first

establish a notion of mixed isolation levels. As with consistency models, we

represent isolation levels as trace properties. To have a common framework

in which to discuss both consistency and isolation, we associate each

consistency level ` with an isolation level I`. We again characterize the

behavior of the program as a set of admitted traces T, where each trace

t ∈ T is a sequence of events e. An event e is now a 6-tuple (a, o, `, T , v, S);

members of this tuple are as defined in section 1.4.1 with the exception

of T , a unique token corresponding to the transaction to which this

event belongs. We lift � to this new setting as �I . We define Te = π4(e)

as the transaction of an event. Our traces now include explicit events

for transaction begin (beginT ), abort (abortT ), and commit (commitT ),

along with corresponding actions begin, abort, and commit. Similarly to

consistency, the meaning of each isolation level I` is given by its isolation

model I`, an (infinite) set of traces containing all executions which satisfy

the guarantees of the isolation level. We use < as the order for events

within traces.

We define a forgetful function F(t) = {(a, o, `, v, S) | (a, o, `, T , v, S) ∈

t ∧ a 6∈ {end, commit, abort}} which drops transaction events from a trace,

converting it back to section 1.4.1’s notion of application traces. We say

that an isolation model I` is well-formed if {F(t) | t ∈ I`} ⊆ `; that is,
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normal events in the isolation model are also in its associated consistency

model. We now define mixed isolation as an analog of mixed consistency:

Definition 1.6.1 (Mixed isolation of trace t).

∀`, t �I ` ∈ I`

We now proceed to argue that our mechanisms of transaction splitting

and witnesses are sufficient to guarantee both mixed consistency and

atomicity for mixed isolation.

1.6.2 Mixed Consistency and Noninterference through Splitting

We first argue that the trace generated by any sequence of transactions

which do not utilize the return or endorse constructs are guaranteed to

preserve mixed-consistency. This argument is naturally dependent on the

nature of the consistency model in question. If the consistency model, as

is traditional, includes only information about independent reads and

writes made to individual memory locations then it is easy to see that

MixT satisfies mixed consistency. Because MixT associates each data object

or memory location with a single consistency model, all reads of some

value from a memory location at some consistency level ` must be paired

with a write to that location at level `. Thus, for all reads in a trace, the

projection operator (�) also preserves all matching writes in that trace. In

this sort of consistency model, the projection operator simply selects sets

of memory locations.

We next turn to enforcing noninterference (again, for transactions with-

out endorse or return). This follows directly from our splitting algorithm
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and type system. In MixT, labels are derived only from remote actions; dur-

ing transaction splitting, these remote actions are segregated into phases.

For any pair of labels `w < `s, all `s-labeled operations occur before `w’s

phase, and thus `w actions cannot interfere with `s actions. For pairs of

incomparable labels `l and `r, our compiler chooses a deterministic order

in which to execute their phases, and our runtime executes both phases

with the environment of their last ancestor. Thus even in this case, our

phases cannot interfere. The remote actions themselves are expected to

be carried out on distinct, mutually-unaware backing storage systems;

these systems are strongly isolated from each other, which prohibits any

additional influence channels.

We make no argument that the trace of an entire program will adhere

to our properties; as MixT is embedded within the context of a larger

C++ program, it will always be possible for programmers to take the

value returned by one transaction, ignore its consistency, and use it in-

appropriately in a subsequent transaction. Further, it is unclear what

semantics consistency labels should have outside of a transaction; the

moment a transaction ends, all its observations may be invalidated by a

subsequently-scheduled transaction, rendering even “strongly-consistent”

labeled values untrustworthy. A program in which all interactions with

the database are made via void-returning MixT transactions will enjoy our

correctness properties; in this case, the surrounding C++ code is isolated

from the MixT transactions.
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1.6.3 Atomicity through Write Witnesses

We now address the claim that our split transactions preserve atomicity,

given underlying stores which themselves preserve atomicity. As the

strongest purely atomicity-based property granted by a standard isolation

level is read committed [Adya, 1999], we limit ourselves to demonstrating

that write witnesses provide the guarantees of the read committed isolation

level when all participating stores also provide the guarantees of the read

committed isolation level.

We first observe that transactions which perform writes in a single

phase trivially satisfy read committed, as their underlying stores provide

this guarantee. We therefore consider an arbitrary sequence of writes

w1 < · · · < wn carried out by the same transaction Tw, but executed against

distinct underlying stores. Let Tr be some transaction which reads some

wn ∈ w1, . . . , wn−1. This Tr must therefore encounter a write witness for wn,

and will check for the corresponding commit witness at all participating

stores before proceeding. The slowest sub-transaction of Tw, upon commit,

will write the final required commit witness for wn. As this witness is only

written when the final commit of Tw occurs, we conclude that Tr’s read

itself will occur after Tw’s commit. Thus, atomicity is preserved.

1.6.4 Read Witnesses

The witness mechanism as described to this point only associates wit-

nesses with writes and commits, guaranteeing full atomicity but not full

isolation; this mechanism cannot always enforce isolation stronger than
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read committed [Berenson et al., 1995]. Transactions which operate over

snapshot-isolating ([Berenson et al., 1995]) levels `1, `2, and `3, perform

reads at `1 and `2, and then use those reads in level `3 may see viola-

tions of snapshot-isolation at `3—despite all of `1, `2, and `3 guaranteeing

snapshot isolation. If `1 permits linearizable reads, then one can recover

snapshot isolation with read witnesses, by inserting calls to acquire after

every read and checking for read/write witnesses before each write. We

have observed few cases in which read witnesses are required; indeed

none of the motivating examples for this work require them. We have not

observed compelling examples in which read witnesses are impossible,

as it would require multiple distinct consistency levels that are snapshot-

isolated, none of which support linearizable reads. Read witnesses are

currently only partially implemented in the MixT compiler.

1.6.5 Mixed Isolation through Splitting and Witnesses

We return to the argument in section 1.6.3. Observe that simply replaying

its argument with read witnesses and reads, rather than write witnesses

and writes, produces a satisfying argument for isolation; any potential

violation of isolation must involve a write wnew which occurs during some

transaction which has already read wold; but as this transaction acquired a

read witness on wold, the write to wnew must be delayed until transaction

commits.

We now are ready to demonstrate mixed isolation. We observe that any

violation of mixed isolation must be due to a failure of mixed consistency,

atomicity, or isolation. We have argued that witnesses and transaction split-
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ting are sufficient to protect against failures of mixed consistency, atomicity,

and isolation independently; we now conclude that their conjunction is

sufficient to grant mixed isolation.

1.6.6 Mixed Consistency and Compositionality

Those familiar with reasoning about consistency models may wonder

how MixT can ensure mixed consistency (Defn. 1.4.2) between non-

compositional consistency models [Herlihy and Wing, 1988]. In general,

non-compositional consistency models fail to capture client-centric notions

of dependency between events from distinct systems; as no store knows

the full set of actions performed by a client, no store is in a position to

restrict possible orderings across all actions [Protic, Tomasevic, and Miluti-

novic, 1996]. It is clearly unrealistic to ask stores to track events of which

they are intentionally unaware. We therefore use a lightweight cross-store

tracking mechanism to explicitly capture session order and causality at

points where execution switches between stores.

Witnesses are the core of our cross-store tracking mechanism. Whenever

a client performs a cross-store sequence of transactions (t1, w2) in which

some stores referenced by w2 aren’t used by t1 (or vice-versa), if those

stores provide non-compositional consistency models and w2 performs

writes to them, then we must enhance w2. Specifically, we extend w2 with

extra phases corresponding to non-compositional models in t1 which did

not already appear in w2. These new phases exist only to write a commit

witness for t1.
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Any client which attempts to read w2’s writes will find these witnesses,

and thus any subsequent read at any of t1’s stores will block until the

matching commit witness is available. This conveys the session-order

relationship between t1 and w2 to all stores; effectively, the commit witness

causes the stores of t1 to communicate the client’s session order to the rest

of the system.

This mechanism is sufficient to achieve the mixed-consistency property

defined in section 1.4.1. We show this by contradiction. If it were not

sufficient, there would be an execution trace t and consistency level ` such

that t � ` 6∈ T`. Data annotated at ` lives on a single store which guarantees

`; as t does not guarantee `, we conclude t is a mixed trace. Furthermore,

as all stores store disjoint sets of objects, any inconsistency in t must arrive

from a violation of session order or observation order—there must be

some sequence of events ew, e`′ , er ∈ t in which ew and er live on the store

of `, e`′ lives on the store of some other level `′, and er is erroneously

sequentialized before ew. But ew and e`′ are in a cross-store sequence, so e`′

was accompanied by a commit witness at ew’s store. Therefore, the session

executing er must have previously read this commit witness, forcing er to

sequentialize after ew.

1.7 upgrading consistency

1.7.1 Semantics and Motivation

As described up to this point, MixT transactions maintain a strict separa-

tion between consistency levels; it is impossible to use a weakly consistent
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if ((a.inbox.strong_read().size() >= 1000000 &&
b.inbox.strong_read().size() < 1000000)
.endorse(strong)) {

a.declare_winner()
} else
if ((a.inbox.strong_read().size() < 1000000 &&

b.inbox.strong_read().size() >= 1000000)
.endorse(strong)) {

b.declare_winner()
}

Figure 1.14: Strongly consistent contest logic with endorsement.

value to influence a strongly consistent operation. This rigid separation

provides strong semantic guarantees, but can be limiting.

As an example, consider the mail-delivery example from fig. 1.2. During

the contest, mail is delivered with causal consistency; users who view their

inboxes may see a slightly stale view of the mail they’ve received—an

acceptable semantics given the already variable latency of mail delivery

itself. The system, however, needs to perform a strongly consistent read to

determine a winner once the contest has finished. Let’s imagine that the

store supports such an operation, and exposes it to MixT via the name

strong_read.

In MixT, the result of any expression can be declared to have an arbi-

trary consistency via the built-in operation endorse(label). It behaves as a

type-cast; the MixT compiler makes no effort to ensure that endorsements

are used appropriately, as their validity often depends on complex sys-

tem properties not visible to the compiler. Like all of weak consistency,

endorsements must be used with care.

Using our hypothetical strong_read operation and MixT’s endorse key-

word, we can fix our transaction (fig. 1.14). This code is correct, but runs

all operations at a strong consistency level—exactly what we were trying
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if (((a.inbox.size() >= 1000000 &&
b.inbox.size() < 1000000)

&& (a.inbox.strong_read().size() >= 1000000 &&
b.inbox.strong_read().size() < 1000000))
.endorse(strong)) {

a.declare_winner()
} else
if (((a.inbox.size() < 1000000 &&

b.inbox.size() >= 1000000)
&& (a.inbox.strong_read().size() < 1000000 &&

b.inbox.strong_read().size() >= 1000000))
.endorse(strong)){

b.declare_winner()
}

Figure 1.15: Efficient contest logic with endorsement. The programmer has intro-
duced an additional check involving a rare strong read for when the
contest is believed to be over. We also must endorse the enclosing
conditional, as it still creates an indirect flow to declare_winner.

to avoid. To improve performance, we can guard each strongly consistent

read with a preliminary weakly consistent test, restoring causal execution

for most transactions while ensuring the declaration of a winner is still

guarded by a strongly consistent condition (fig. 1.15). The resulting con-

sistency of the strong declare_winner() operation is no longer separable

from the causally consistent read; we have accepted the possibility that

our winner may be declared late.

1.7.2 Compiling Endorsements

Because of transaction splitting, endorsement is not straightforward. It

fundamentally involves running weaker commands before stronger ones —

and thus requires more than one phase per underlying store. But naively

adding additional phases will not provide acceptable semantics; having

one phase per underlying store is key to MixT’s isolation guarantees.
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` ∈ Label
e ::= . . . | e.endorse(`) | e.ensure(`)

Figure 1.16: Syntax extensions for endorsement.

. . . Strongest store 
(only reads)

Weakest store 
(only reads)

Strongest store 
(writes OK)

Weakest store 
(writes OK)

. . . 

Figure 1.17: Transaction phases with endorsement.

We address these concerns with two mechanisms: read-only phases and

read witnesses. As in other information-flow languages, endorsement is

indicated by annotating the endorsed expression(fig. 1.16). The compiler

separates the transaction into two parts: the pre-endorse part and the post-

endorse part. To ensure atomicity, the pre-endorse part of the transaction

is checked to ensure that it contains no writes. The code is then split into

phases in the usual way, except that an artificial “pre-endorse label” is

first joined with all labels in the pre-endorse code so that pre-endorse

code appears to the compiler to have stronger consistency than all post-

endorse code. This process is depicted in Figure 1.17. If full isolation is

required, read witnesses (section 1.6.4) may be employed. An optimization

which uses read validation in place of read witnesses (as in optimistic

concurrency control) is also possible [Kung and Robinson, 1981].
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1.8 implementation

MixT has been implemented as four separate C++17 components, num-

bering almost 30,000 lines in total: the transactions language compiler

(10k), the core library (2.8k), the tracking mechanism (1k), the Postgres

implementation (1.4k), and support utilities (14k). The compiler can be

further broken down into various phases: parsing (1.4k), A-normal trans-

formation (500), type inference (1k), label inference (1.7k), endorsement

(250), splitting (1.6k), optimization (1k), and codegen (1.4k). The current

implementation supports an unbounded number of backing stores in a

single application.

To evaluate MixT, we also developed several sample backing stores,

operating either in-memory or based on PostgreSQL 9.4. These interfaces

expose a selected set of prepared statements as custom operations and

are designed to provide linearizability (with strict serializability), causal

consistency (with snapshot isolation), and eventual consistency (with read-

uncommitted isolation.)

1.8.1 Efficiency Optimizations

Recall that mixed-consistency transactions use witnesses to ensure atomic-

ity, wherein an extra read operation accompanies each stated read, and

an extra write operation accompanies each transaction. As described so

far, this mechanism would frequently encounter stale values, harming

performance for no gain in safety. Additionally, commit witnesses would

slowly accumulate on the store, wasting storage. Ideally, we would be
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able to determine whether a value was stable across an entire store, and

therefore did not require such defensive tracking behavior. To accomplish

this we observe that, in order to maintain its own guarantees regarding

operation order, our non-compositional store likely has some notion of

a timestamp or version number already available for internal use. This

assumption proves true in practice: systems such as COPS, Eiger, 2-master

PostgreSQL, Bolt-on, TARDIS, HBase, and Mongo (via Vermongo) all ei-

ther use these vector clocks directly or are easily modified to employ them

[Bailis, Ghodsi, et al., 2013; Crooks et al., 2016; Lloyd et al., 2011, 2013;

Plugge, Membrey, and Hawkins, 2010]. We enhanced our Handle API to al-

low client stores to expose this notion of time to MixT through an optional

timestamp method . We augment read and write witnesses to include

the “current time” of transaction commit, and provide a lightweight TCP

protocol through which backing stores can notify MixT clients of the most

recent version number which is guaranteed to have reached the entire

store. If the ability to access an accurate transaction commit time from

within a transaction does not exist, commit witnesses can be augmented

to include the addresses of all read and write witnesses created during the

transaction. Leveraging this additional information, MixT avoids generat-

ing witnesses when the objects involved are already widely available, and

can safely remove stale commit witnesses.

1.8.2 Remote Execution in MixT

With MixT’s ability to split transactions into phases comes the opportunity

to distribute the transaction code itself. By deploying a lightweight worker
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process alongside existing backing stores, MixT application programmers

can run transaction phases directly at stores, incurring only a single round

trip to establish each phase and collect its results – and allowing all witness

checks to be carried out locally. In fact, this decision—to ship transaction

code directly to the storage system—has become increasingly popular

among high-performance data storage systems and is central to some

modern databases [Dubey et al., 2016; Duggan et al., 2015; Kallman et

al., 2008; Stonebraker and Weisberg, 2013]. MixT’s approach to remote

execution is straightforward. We assume that each application manages

its own lightweight worker at the storage location; we leave the task of

ensuring code is up-to-date to the MixT application programmer.

1.8.3 MixT Compiler Implementation

We implemented MixT as a domain-specific language embedded into

modern C++. MixT is written in pure C++17, and can be compiled us-

ing any C++17-compliant compiler3. Our entire compiler is written in

constexpr C++ [Meyers, 2014], allowing it to run during the “template

expansion” step of compilation of the surrounding C++ code. Specifically,

mixt_〈keyword〉 macros convert their arguments into a compile-time string,

which is then parsed and compiled by our compiler. In order to link

names within the transactions language to native C++ objects, the macros

capture both the type of their arguments and their string representations,

using these during the transaction compilation. All compilation, including

transaction splitting, is accomplished alongside C++ compilation; none

3 The MixT compiler is tested under ≥clang-3.9 and ≥g++-7.1; certain syntax extensions
require -fconcepts
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is deferred until run time. Transactions are compiled to a set of inlined,

statically bound functions which are invoked from a single point in code,

allowing the C++ compiler to optimize away all function-call overhead,

producing machine code quite close to the syntax specified by the transac-

tion. This approach allows MixT to support arbitrary syntax, semantics,

and type systems, without requiring an external compiler or preprocessor,

and without adding unnecessary run-time overhead. We are not bound to

the syntax, semantics or keywords of C++; MixT’s similarity to C++ is a

conscious design choice. We follow the language-as-a-library paradigm:

as MixT effectively adds extra phases to existing C++ compilation, to use

MixT in existing C++ projects all one must do is #include the MixT header

files.

1.9 evaluation

We use the MixT implementation to model an intended application do-

main: user-facing application servers that share one linearizable and one

causally consistent underlying storage system, where application servers

are geographically close to only the causal replica they are using. We

believe this closely mirrors reality. Weakly consistent storage servers can

be relatively close to application servers because they are able to withstand

high latencies during replication and can therefore be separated geograph-

ically; linearizable data stores are typically housed within a single data

center because latencies encountered during replication have an outsized

impact on overall performance.
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In this setting, we explore several key questions regarding the perfor-

mance of MixT:

• Do mixed-consistency transactions, as promised, offer better per-

formance than running similarly atomic transactions with strong

consistency?

• What overhead is added by the witness mechanism used to preserve

consistency guarantees when non-compositional consistency levels

are combined?

• On what workloads does this mechanism work well? What is the

performance impact of different mixtures of mixed and pure transac-

tions?

1.9.1 Experimental Setup

To measure the performance of MixT, we simulate a geo-replicated appli-

cation. In our setup, logically separate application servers each maintain

connections to causally consistent and serializable databases. Connections

to the serializable database experience a round-trip latency of 85ms ±

10ms; connections to causally consistent databases experience a round-trip

latency of 1ms. Latency to the causal system was set by measuring ping

times between an Internet2-connected university and its nearest data cen-

ter; latency to the linearizable system was set by measuring ping times

between Internet2-connected universities on the east and west coasts of

the United States. All latency simulations are provided by the netem ker-

nel module on Linux 3.17. We employ three separate physical machines:
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one hosting all clients, one hosting the causal store, and one hosting the

linearizable store.

For driving load to application servers, we adopted a semi-open world

model, with delay between events following an exponential distribution.

We increase load by increasing the number of MixT clients, not by increas-

ing the rate of events issued by each client.

using postgresql as a backing store Our causal and lin-

earizable stores are both backed by PostgreSQL 9.4 running on ded-

icated machines. These instances are configured with a maximum of

2010 connections, 128 MB of shared buffers, and with both fsync and

full_page_writes disabled to improve performance; the rest of Post-

greSQL’s configuration parameters are left at their default values.

These PostgreSQL instances consist of only two tables; one table asso-

ciates integral values with integral keys and version numbers; the other

table associates binary blobs with integral keys and version numbers. Any

integral type is mapped to a row in the first table; all other types are

mapped to a row in the second table. SQL queries over these tables are

naive updates, selects, and increments (for the integral table).

Because we use PostgreSQL as a key–value store, SQL-specific perfor-

mance concerns such as query optimization or parse time should not

significantly affect our results.

When running as a linearizable store, PostgreSQL is put in a “normal”

operating mode with a single master per object and the SERIALIZABLE

transaction isolation level. The coding overhead required to create this

interface was surprisingly small; about 180 lines of C++ code, mostly for

registering prepared statements.
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To configure PostgreSQL as a causally consistent store, we created four

replicas of data, and partitioned client programs among the four copies.

Each instance runs transactions with snapshot isolation enforcing the

guarantees of causal consistency. To order operations occurring at distinct

replicas, we use a vector clock as a per-row version number. Vector clock

entries are just the microsecond-resolution time at each master, so vector

clock maintenance does not add serialization conflicts.

A stored PL/pgSQL operation updates these version numbers upon row

modification.

These mechanisms were implemented in 1,000 lines of C++ and about

100 lines of PL/pgSQL.

Snapshot Isolation enforces the guarantees of causal consistency because

within a single session, all reads will reflect data no older than the previous

transactions’ reads, and each transaction can see the modifications made by

all previous transactions from this session. When reading data, a custom

PL/pgSQL stored procedure automatically merges all four replicas and

produces the appropriate vector clock.

1.9.2 Benchmarks

We could find no existing benchmarks for mixed-consistency transac-

tional systems. Instead, we developed two new benchmarks intended to

represent the emerging mixed-consistency landscape. The first is a sim-

ple microbenchmark based on incrementing integral counters. It features

read-only transactions that fetch the value at a counter, and read-write

transactions which increment that value. Objects referenced during read
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operations are selected from a Zipf distribution over 400,000 names; objects

referenced during write operations are selected from a uniform distribu-

tion over the same names. These objects are duplicated on both a lineariz-

able and casual store. In this benchmark, clients randomly move between

causal mode where all transactions are causally-consistent, and a lineariz-

able mode where all transactions are linearizable, with a fixed probability.

We extend this benchmark to involve mixed-consistency transactions in

the next section.

The second benchmark is the Message Groups example discussed in

section 1.2.2. This benchmark features four more-complex transactions:

message delivery (fig. 1.4), user creation, inbox checking, and group joining.

User creation and inbox checking are causally consistent, while message

posting and group joining are mixed-consistency transactions. Each client

is assigned a range of inboxes and groups from which it selects uniformly

at random.

1.9.3 Counter Results

The counters benchmark offers several tuning parameters for exploring

the space of workloads. As copies of our complete set of objects exist on

both a causal and linearizable store, we can fine-tune both the mixture

of causal and linearizable operations and the combination of reads and

writes in our tests.

speedup relative to linearizability The most important ques-

tion for MixT performance is whether mixed-consistency transactions offer
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Figure 1.18: Maximum throughput as a function of linearizable mix for a 70%
read workload. The blue (top circle) series shows maximum achiev-
able throughput in transactions per second (tps) without witnesses;
the remaining series shows full witness tracking with progressive
artificial latency. The solid black line marks 0% causal without track-
ing (also the leftmost blue point), which serves as a baseline. (b)
Maximum throughput as a function of read share for a 75% causal
workload without tracking.
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Figure 1.19: CDF plots for operation latency. C: Causal, L: Linearizable, T: Tracked,
U: Untracked. Dashed lines: reads, solid lines: writes. All linearizable
lines appear atop each other on the right.

a speedup compared to the simple alternative of running transactions

entirely with linearizability. fig. 1.18 shows that, indeed, mixing causal

and serializable operations considerably increases maximum throughput.

Because of the high latencies incurred by serializable transactions, in-

creasing the causal percentage of overall operations yields significant

performance improvements. These benefits level off at about 80% causal

in our tests; at this point, the causal storage system becomes overloaded,

limiting the benefits of lower latency.

overhead of witnesses One concern about MixT might be the

overhead introduced by witnesses. We modify our simple counter in-

crement test to explicitly include both linearizable and causal phases in

transactions which follow a consistency mode switch, and to force witness

generation in these transactions even if they would not normally require

it. The rationale for this is based on the non-compositionality of causal

consistency. We additionally modify our experimental setup to simulate

latency of replication, first forcing approximately 1% of causal witness

verifications to delay for 30ms, then explicitly delaying all causal witness



1.9 evaluation 85

verification requests by 30ms. As seen in fig. 1.18, the witness mechanism

has a noticeable impact mostly above 60% causal, with a maximum slow-

down of approximately 10%: well above the performance possible were

the entire transaction mix to remain linearizable. Further demonstrating

that round-trip time is paramount, read-only transactions achieved only

20% higher maximum throughput than read-write transactions.

latency Witnesses do affect latency, especially because of design

decisions made for backward compatibility. Figure 1.19 shows this effect.

Latencies are presented as a CDF collected from the system running at

60% of maximum throughput, in a configuration in which 75% of all

operations are reads and 75% of all operations use the causal store. To

see the worst-case impact of witnesses, we ran this test twice: once with

witnesses enabled and a forced 30ms delay (“tracked”), and once without

(“untracked”). The red (leftmost) and orange (rightmost) lines on this

graph measure performance without witnesses; the green (also rightmost)

and blue (middle) lines represent performance with witnesses. The forced

30ms delay on witnesses is quite clear for causal operations, but there is

almost no other overhead. On the other hand, the impact of witnesses

on linearizable operations is negligible; as witnesses incur no replication

delay in the linearizable store, they never delay linearizable phases.

In all configurations, a very small number of requests (less than .01%)

experienced extreme latency—as high as 30s in the worst case. We believe

this to be an artifact of unfairness in Postgres’s contention management.
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Figure 1.20: Throughput vs. latency for Message Groups.

Table 1.1: Maximum throughputs for Message Groups, with standard error. The
rightmost four columns give the number of reads (R) and writes (W)
and indicate whether the transaction involves a causal (C) or lineariz-
able (L) phase.

Transaction Throughput (tps) R W C L

Check inbox 10,626 ± 15 6 0 X ×
Join group 5,430 ± 30 2 1 X X

Deliver message 3,313 ± 4 6 3 X X

Create user 972 ± 19 5 2 X X

1.9.4 Message Groups Results

To evaluate the running Message Groups example, we use a configuration

with 40,000 groups, each of which contains a single distinct user. Each of

these 40,000 users has a single message in their inbox. We disable message

logging, eliminating eventually-consistent phases and leaving only causal

and linearizable phases. We first run each Message Groups transaction in

isolation against this initial configuration, establishing an average maxi-

mum throughput over at least 3 runs (table 1.1). This table lists the average
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maximum throughput for each transaction in isolation, along with the

number of read and write operations executed during these transactions.

For all transactions, we report the number of operations executed when

in our initial configuration; message delivery and inbox downloading

require more operations as the group and inbox sizes grow. The purely

causal inbox download transaction benefits from the speed of causal con-

sistency, while the mixed-consistency transactions all achieve reasonable

performance despite the overhead of contacting a distant linearizable store.

We also evaluate performance on a mix of transactions: 56% inbox

checking, 20% message posting, 18% group joining, and 6% user creation.

We evaluate the system for 3 minutes, slowly increasing the client request

rate from 2,000 tps to 5,000 tps. Average maximum throughput over 4

trials was 4,237 ± 10.5 tps with an abort rate between .0161% and .0187%.

This represents a speedup of 3.5 over a baseline in which all operations

execute against the linearizable store (average maximum throughput: 1,228

± 15 tps). As expected, mixed-consistency transactions yield significant

speedup.

1.10 related work

Quelea [Sivaramakrishnan, Kaki, and Jagannathan, 2015] and Disciplined

Inconsistency [Holt, Bornholt, et al., 2016] are the work closest to MixT

in spirit. Both use user-provided data annotations to infer appropriate

consistency levels for operations within a single program. The system

then automatically chooses an appropriate consistency model for each

operation. The Quelea approach, using Cassandra to store compressed
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logs of all system events, differs markedly from MixT’s approach of trans-

action partitioning based on static information flow analysis. Disciplined

Inconsistency also uses information flow to enforce separation between

consistency labels but does not offer any transactional mechanism. All

three systems solve distinct slices of distributed, mixed-consistency pro-

gramming, suggesting a combination of approaches is an avenue for future

work.

choosing consistency levels Choosing appropriate consistency

models for data is a problem orthogonal to our work. Prior work [Gotsman

et al., 2016; Herlihy, 1991; Holt, Bornholt, et al., 2016; Holt, Zhang, et al.,

2015; C. Li, Leitão, et al., 2014; C. Li, Porto, et al., 2012; Sivaramakrishnan,

Kaki, and Jagannathan, 2015] provide languages of constraints to describe

data invariants, in turn providing the weakest consistency possible while

still satisfying those constraints. Other work [Brutschy et al., 2017; Gotsman

et al., 2016; Kaki et al., 2017] aims for formal methods for users to reason

about their choice of consistency level and to prove that desired code

invariants are satisfied.

transactions in weak geo-replicated systems Existing work

in the shared memory [Dongol, Jagadeesan, and Riely, 2018] and dis-

tributed systems [Ardekani, Sutra, and Shapiro, 2013; Du et al., 2014; Hsu

and Kshemkalyani, 2018; Lloyd et al., 2013; Mehdi et al., 2017; Shudo and

Yaguchi, 2017] communities has attempted to provide single-store trans-

actions in the presence of weak consistency guarantees. This prior work

focuses on definitions and mechanisms for weak transactions at a single

consistency level, and indeed, we rely on the guarantees they provide.
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mixed-consistency systems Many existing data stores provide

operations with a variety of consistency guarantees [Cooper et al., 2008;

DeCandia et al., 2007; Lakshman and Malik, 2010; C. Li, Porto, et al., 2012;

Plugge, Membrey, and Hawkins, 2010], but without providing any seman-

tic guarantees across operations. Others provide tools to tune consistency

based primarily on performance considerations [Chatterjee and Golab,

2017; D. B. Terry, Prabhakaran, et al., 2013; Yang, You, and Gu, 2017].

Guerraoui, Pavlovic, and Seredinschi [2016] define a unique programming

model by which programs are first presented with weakly consistent data

and may choose to wait for strong data instead. These systems provide

neither general transaction mechanisms nor strong semantic guarantees.

mixed-consistency systems with transactions Previous

work [Gao et al., 2003; Kraska, Hentschel, et al., 2009; Kraska, Pang, et al.,

2013; C. Li, Porto, et al., 2012; Yang, You, and Gu, 2017] focuses on progres-

sively weakening transaction isolation based on a combination of run-time

and static analysis, with the aim of enforcing strong consistency. Several

papers provide mechanisms for users to choose transaction isolation levels

[Brutschy et al., 2017; Kaki et al., 2017; Xie, Su, Kapritsos, et al., 2014], but

do not handle the semantic anomalies involved. A few systems [Dongol,

Jagadeesan, and Riely, 2018; Yang, You, and Gu, 2017] provide distributed

transactions at multiple consistency levels, but allow unsafe mixing of

consistency levels. Microsoft’s new database Cosmos DB is a recent exam-

ple, providing transactions with a choice of four well-defined consistency

levels [Gentz et al., 2017]. Some prior systems do enable programmers to

mix transactions of different consistency with strong guarantees [C. Li,

Porto, et al., 2012; Shasha et al., 1995; Xie, Su, Littley, et al., 2015]. However,



90 mixt

this line of work relies on a closed-transaction model wherein the system

is aware of all possible transactions any client will run; performance is

brittle because changing a single transaction somewhere in the system

can significantly affect the performance of unrelated transactions. This

work cannot mix consistency within a single transaction, and it focuses

on a single store. Nevertheless, these systems could be used by MixT as

backing stores.

consistency across multiple systems A much smaller body of

work attempts to make the job of programming against multiple data stores

easier. The most obvious candidate is SQL, and the SQL compatibility

libraries like JDBC and ODBC [Hamilton, Cattell, Fisher, et al., 1997]. These

standardized languages attempt to provide a unified API for programming

against every RDBMS; and while each different database has its own

unique implementation of the SQL standard, much of the language is

shared, making it easy to port simple code which ran against one RDBMS

to run against a different one. The SQL language itself is only aware of a

single database system, leaving the work of coordinating actions across

multiple database systems up to the programmer. Additionally, issues of

consistency and isolation level are not addressed in SQL itself; rather, each

underlying system determines which actions are safe.

enhancing consistency of existing systems Beyond SQL,

some existing work has focused on mechanisms that upgrade the consis-

tency guarantees of weakly consistent underlying stores [Bailis, Ghodsi,

et al., 2013; Hsu and Kshemkalyani, 2018; Shudo and Yaguchi, 2017]. In-

deed, several projects [Lloyd et al., 2013; Sivaramakrishnan, Kaki, and
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Jagannathan, 2015] use this approach internally, adding consistency layers

atop existing distributed systems like Cassandra.

1.11 conclusion

We have introduced a new domain-specific programming language for

writing modern geodistributed applications that need to trade off per-

formance and consistency. The mixed-consistency transactions offered

by MixT make it possible for programmers to safely combine data from

multiple consistency levels in the same transaction, with confidence that

weaker data does not corrupt the guarantees of stronger data. Appealingly,

this model can be implemented in a backward-compatible way on top of

existing stores that offer their own distinct consistency guarantees, without

disrupting legacy applications on those stores. The performance results

suggest that for geodistributed applications, mixed-consistency transac-

tions enable higher performance by using weaker consistency models

selectively and safely.
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2.1 introduction

While MixT shows how to safely combine weak and strong consistency, it

would still be preferable to simply use strong consistency everywhere; the

trouble is that existing strongly-consistent systems don’t scale. There is a

pervasive need for scalable, cloud-hosted services that guarantee rapid, ac-

curate responses to huge event volumes. Yet today’s high-throughput cloud

infrastructure is focused almost entirely on weakly-consistent systems. As

has been reliably demonstrated, working with weak consistency is hard;

once a system hits millions of events per second, even the most unlikely

consistency violations can lead to continuous errors, lost data, or unde-

buggable performance regressions. With MixT (chapter 1), programmers

can annotate their data, indicating that vulnerable data must be stored

under strong consistency to avoid these issues. But mixed transactions

provide their greatest performance improvement when most transactions

avoid touching strongly-consistent data at all. Thus programmers avoid

processing their data as it streams into the system, instead storing it in

some distributed filesystem for later processing. This comes at great ex-

pense, both in terms of resources devoted to this storage and in terms of

latency induced by the need to wait long periods for data to converge to a

reliable, strongly-consistent state.

93
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Derecho is a fast, strongly-consistent distributed systems toolkit suitable

for streaming pipelines currently relegated to the realm of weak consis-

tency. Derecho allows programmers to describe their distributed system

as a constellation of replicated objects—effectively actors ([Agha, 1986;

Hewitt, Bishop, and Steiger, 1973])—which can call out to each other via

a custom remote method invocation (RMI) framework. To achieve peak

performance, Derecho allows programmers to directly control replication

factor, sharding, and layout on a per-object basis, allowing programmers

to transparently group objects which would benefit from co-location or

ensure independent services live on independent machines.

Once a Derecho constellation (or, more prosaically, “group”) has been

established, Derecho gets out of the way and lets the replication fly. Dere-

cho’s namesake is an intense storm characterized by powerful straight-line

winds that overwhelm any obstacle. This work views data replication

similarly: Object replication and communication occurs over non-stop

pipelines, without pausing for consensus or coordination in the absence of

failures. To achieve strong consistency Derecho overlays an out-of-band

state-machine model [Schneider, 1990] on its replicated objects, report-

ing data to listening applications only when it has been durably and

consistently replicated. Derecho’s control messages, handling consistency

and fault tolerance, are implemented as a separate subsystem from its

replication protocol, allowing both to proceed at their maximum rate.

Key to both Derecho’s correctness and performance are its replication

and membership management protocols. We adapted the tried-and-true

protocols from virtual synchrony [K. P. Birman and T. A. Joseph, 1987]

to a new platform: a monotonic Datalog-like core language implemented

atop a lock-free distributed Shared State Table (SST) [Gallaire and Minker,
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1978]. By leveraging monotonicity, Derecho’s replication protocols never

need to block on a consensus leader for correctness; the system only

requires a leader to coordinate membership changes and system restart.

We achieve this by phrasing stable message delivery—the key primitive of

virtual synchrony—in terms of stable predicates implemented in the SST’s

monotonic core language. Thus data is moved in non-blocking, high-rate

flows; control information is exchanged through non-blocking one-way

flows; and the update and query paths are separated so that neither blocks

the other.

Our experiments show that Derecho is orders of magnitude faster than

today’s most widely-used Paxos libraries and systems, even when running

over TCP—a domain for which Derecho is not optimized. On a machine

where the C++ memcpy primitive runs at 3.75GB/s for non-cached data

objects, Derecho over 100Gbps RDMA can make 2 replicas at 16GB/s and

16 replicas at 10GB/s: far faster than making even a single local copy. The

slowdown is sublinear as a function of scale: with 128 replicas, Derecho

is still running at more than 5GB/s. Latencies from when an update is

requested to when it completes can be as low as 1.5µs, and recipients

receive them simultaneously, minimizing skew for parallel tasks.

This new point in the cloud-performance space enables new options for

cloud infrastructure design. By offering consistency at high speed, Derecho

eliminates the need for delayed event processing, enabling distributed

concurrent data-sharing patterns previously relegated to the space of

NUMA architectures. And by building out this performance with a flexible

API focused around replicated objects, Derecho brings together the ease-of-

use of traditional actor programming with the speed of modern streaming

databases.
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The remainder of this chapter is organized as follows. Section 2.2

focuses on the application model, the Derecho API and the corresponding

functionality. Section 2.3 discuses the SST and its core monotonic language.

Section 2.4 discusses the system protocols and implementation details.

Section 2.6 focuses on Derecho’s performance, but also includes side-

by-side comparisons with LibPaxos, Zookeeper and APUS. Section 2.7

reviews prior work.

Derecho is a large collaboration across several groups at Cornell; this

chapter seeks only to present the work performed by me (Matthew Milano),

using the remainder of the Derecho system as context for that work. Much

of the text in this chapter was previously presented in the Derecho Journal

Paper [Jha et al., 2019]. At a high level, my contributions to the Derecho

project were:

• The introduction of monotonic reasoning.

• a core DSL for implementing system protocols.

• With Ken Birman, adapting the traditional vsync protocol to Derecho.

• The Derecho programming model, including the design and initial

implementation of its replicated object layer.

• The Derecho verification effort in Ivy, though a majority of this work

was performed by Ken Birman and would not have been possible

without the assistance of Sagar Jha, Orr Tamir, and Oded Padon.

In particular, I must acknowledge Sagar Jha, Derecho’s lead implementer

and performance architect, who has taken decisive charge of the Derecho

system’s more recent extensions.
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Figure 2.1: Derecho applications are structured into subsystems. Here we see
16 processes organized as 4 subsystems, 3 of which are sharded: the
cache, its notification layer, and the back-end. A process can send
1-to-1 requests to any other process. State machine replication (atomic
multicast) is used to update data held within shards or subgroups.
Persisted data can also be accessed via the file system, hence a Dere-
cho service can easily be integrated into existing cloud computing
infrastructures.

2.2 application model and assumptions made

2.2.1 Target Domain

Derecho is a library designed for single-datacenter distributed system

deployments. Derecho’s API allows programmers to build groups of

replicated objects which represent individual services. Developers can use

Derecho’s object-oriented architecture to build next-generation versions of

ZooKeeper (configuration management), Kafka (message queues), Ceph

(filesystems), or any other service whose core primitives require replication

and consistency.

But Derecho can do more than serve as a backdrop to existing microser-

vice architectures. These existing applications evolved without consistent,

near-line-speed replication; simply porting the underlying infrastructure

to run over Derecho would make limited use of the system’s power.
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We conjecture that the most exciting possibilities will involve time-

critical applications arising in the frontiers of computing. For example,

emerging cyber-physical systems frequently need to make split-second

decisions using only local data and computational power; a self-driving car

cannot wait for the cloud of today to tell it if it’s about to hit a pedestrian.

We envision a future cloud with low latencies and pervasive connectivity,

allowing it to serve a role even in these settings. When that happens,

Derecho will be there, ready to provide microsecond-scale responsiveness

without sacrificing consistency.

2.2.2 Programming Model

Derecho’s programming model fuses the classic idea of process groups

with the actor model. A Derecho application consists of a single top-

level group composed of many individual subgroups, each serving as an

independent subsystem within the overall Derecho process. Subgroups

are object-oriented; each subgroup is represented as an instance of some

replicated class, and subgroups communicate by issuing RMI invocations

amongst themselves. In this way one can view subgroups as replicated

actors, and view an entire Derecho process as a constellation of communi-

cating actors.

When building a Derecho program, programmers design their sub-

groups as traditional C++ classes with one major exception: programmers

do not directly construct instances of these classes, but rather defer to

the top-level Derecho group to instantiate them based on programmer-

specified layout constraints. These constraints are very flexible; while
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programmers may specify the exact sets of nodes for each subgroup if

necessary, other members of the Derecho team have provided a library of

common high-level constraints to make specifying group layout flexible

and quick [Jha et al., 2019]. For example, programmers could specify that a

subgroup have a replication factor of at least 3, or that a certain subgroup

only be provisioned if sufficient nodes in the top-level group exist to

support it. To enable this flexibility the code for each subgroup must be

available at all nodes which might instantiate that subgroup. To facilitate

this, Derecho makes the simplifying choice of using the same binary for

all nodes within the system. At startup time, each Derecho node will use

the layout function to choose the roles it inhabits.

When specifying subgroup layouts, programmers also may specify

unique identifiers, indexed by type, to refer to individual subgroups. Sub-

groups use the top-level group as a naming service capable of translating

these identifiers into temporary subgroup handles. When viewing sub-

groups as actors these subgroup handles correspond to external actor

references, and can be used to invoke methods on the remote object. Pro-

grammers can choose to remotely invoke methods on a single replica via

P2P invocations, or on all replicas via Ordered invocations. Ordered invo-

cations are atomic and isolated: all members of each subgroup will receive

the invocation simultaneously, and no other methods may be invoked

on that subgroup until the invocation has completed. The abstraction of

atomicity is preserved even in the presence of failures: if a membership

reconfiguration is triggered during the invocation of a remote method,

then that invocation will be restarted once the reconfiguration is complete.

The choice to treat the top-level group as a naming service also grants

flexibility to applications. As the system configuration changes, the ex-
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act mapping from nodes to subgroups will change to better reflect the

available system resources. By design, these changes invalidate all existing

subgroup handles, causing their use to throw an exception. This in turn

communicates to the programmer that the exact subgroup with which

they are communicating has changed, allowing the programmer to either

request a new subgroup handle from the top-level group, or change its

behavior in light of the new system state. It is important to note that sub-

group handles may only be invalidated in-between method invocations; a

handle retrieved and used during a single method invocation will never

be invalid.

Figure 2.1 contains an example application built using Derecho. In this

example, the µ-services include a load balancer, a sharded cache layer, a

sharded back-end data store, and a pattern of shard-like subgroups used

by the back end to perform cache invalidations or updates. Each µ-service

is implemented by an elastic pool of application instances. Notice that

some µ-services consist of just a single (perhaps large) subgroup while

others are sharded, and that shards typically contain 2 or 3 members.

Figures 2.3-2.6 illustrate a few of the communication patterns that a

subgroup or shard might employ.

2.2.3 Restarts and Failures

Derecho can tolerate two forms of failure: benign crash failures and network

partitioning (see [Jha et al., 2019] more details). We believe that such failures

will occur relatively infrequently for even moderately large data center

services (ones with thousands of processes). At Google, Jeff Dean measured
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Q
Service was not running. P awaits 
an adequate set of participants 
(here, 2 suffice) repairs persistent 
data, and restarts the system.

Service was active, S joins.  State 
transfer used to initialize data.

P

Q
P

Figure 2.2: When launched, a process linked to the Derecho library configures its
Derecho instance and then starts the system. On the top, processes
P and Q start a service from scratch; below, process S joins a service
that was already running with members {P,Q,R}. Under the surface,
the membership management protocol uses leader-based consensus,
with the lowest-ranked node (here P) as the initial leader.

Figure 2.3: Multicasts occur within sub-
groups or shards and can
only be initiated by mem-
bers. External clients inter-
act with members via P2P
invocations.

Figure 2.4: If a failure occurs, cleanup
occurs before the new
view is installed. Derecho
supports several delivery
modes; each has its own
cleanup policy.

reliability for several such services, and found that disruptive failures or

reconfigurations occurred once per 8 hours on average [Shankland, 2008].

Derecho needs just a few hundred milliseconds to recover from failure.

The transports over which Derecho runs all deal with packet loss1;

hence Derecho itself never retransmits. Instead, unrecoverable packet

loss results in a failure detection even if both endpoints are healthy. The

communication layer notifies Derecho, which initiates reconfiguration to

drop the failed endpoint.

1 RDMA requires a nearly perfect network, but does have a very primitive packet retrans-
mission capability.
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Figure 2.5: A multicast initiated within
a single subgroup or shard
can return results.

Figure 2.6: Read-only queries can also
occur via P2P invocations
that access multiple sub-
groups or shards.

A network failure that partitions a group would manifest as a flurry of

“process failure” events reported on both “sides” of the failed link. As is

standard in this space, Derecho’s virtual synchrony protocol will cause

all non-majority partitions to shut down, leaving only at most a single

majority partition to continue. This majority partition will re-configure

itself, dropping all unreachable group members. In terms of Brewer’s CAP

conjecture, this places Derecho firmly into the “CP” bucket [Brewer, 2010;

Gilbert and N. Lynch, 2002]. We will review both failure handling and the

membership reconfiguration in more detail in section 2.4.1.

Even if the top-level group never partitions, all the members of a shard

or subgroup could fail. In such a setting, the top-level group would be

unable to reprovision the subgroup; indeed, Derecho pauses even if a

single shard has fewer than its minimum number of members. We do

this to respect programmer-specified constraints; allowing updates to an

under-provisioned subgroup might violate the developer’s desired degree

of replication, or fail to adhere to machine placement constraints.

Accordingly, Derecho waits for an adequate next view after failure: one

that includes a majority of members of the prior view, and in which all

shards have a sufficient number of members. If needed, Derecho then

copies state to joining members, and only then does the system permit
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normal activity to resume. This late-joining protocol, and its associated

restart protocols, are due to Tremel and can be found in more detail in

[Jha et al., 2019].

2.2.4 The replicated<T> Class

As mentioned in subsection 2.2.2, each Derecho subgroup can be viewed as

an actor, backed by some existing C++ class. These actors are instances of a

replicated<T>, a wrapper around some user-provided class. These actors

are managed by Derecho; users access instances of these replicated<T>s

by requesting handles for individual subgroups from the top-level group.

Any class is in principle suitable to replication as a replicated<T>; the

only requirements enforced by Derecho are that the class is serializable

and that the programmer explicitly annotates methods which should

be exposed via RPC. Derecho provides macros which can automatically

generate both the requisite serialization code and the necessary method

annotations.

For example, if some processes wanted to invoke a method on subgroup

k of type MemCacheD, they would first look up a handle for that subgroup

from the top-level group:

ExternalCaller<MemCacheD>& cache = g.get_nonmember_subgroup<MemCacheD>(k);

In this example, the caller itself is not necessarily a member of the target

group, and so must request an ExternalCaller handle for this group.
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To use this handle, the caller might choose to issue a RMI to a specific

replica within the group using the lightweight p2p communication protocol.

Here, the caller communicates specifically with a replica named who:

auto outcome = cache.p2p_send<RPC_NAME(request_put)>(who, "John Smith",

22.7);

auto result = cache.p2p_send<RPC_NAME(get)>(who, "Holly Hunter");

The ExternalCaller handle is limited to these single-replica invocations.

Invoking an ordered (i.e., atomic) operation across all members of a group

requires a first-class replicated<T> reference:

replicated<MemCacheD>& cache = g.get_subDerechoGroup<MemCacheD>(k);

auto outcome = cache.ordered_send<RPC_NAME(put)>("John Smith", 22.7);

Here the caller used ordered_send, which provides a 1-to-N atomic

multicast. Failures that disrupt an ordered_send are masked: the proto-

col cleans up, then reissues requests as necessary in the next adequate

membership view, preserving sender ordering.

In Derecho, Remote Method invocations follow a promise/future pat-

tern; the outcome object contains a future, which can be queried to de-

termine the status of the request and used to retrieve its result when

the request is complete. Derecho exposes each replica’s response to the

multicast individually; if desired, programmers can use the outcome object

to iterate over each response as it arrives.

2.3 a core monotonic language

The overarching trend that drives our system design reflects a shifting

balance that many recent researchers have highlighted: RDMA networking
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is so fast that to utilize its full potential, developers must separate data

from control, and cannot wait for traditional consensus operations in the

critical path [Belay et al., 2014; Peter et al., 2014]. This is the same argument

at the heart of the popularity of weak consistency: the system must manage

replicated data, but cannot wait for these replicas to fully synchronize after

every operation. Our solution to this seeming contradiction comes in the

form of a new core monotonic programming language, which guarantees

convergence in the style of BloomL [Alvaro, Bailis, et al., 2013]. This

language allows programmers to write stable predicates over a series

of monotonic variables that express monotonic deductions, and to condition

visible actions (or triggers) on those predicates.

2.3.1 Monotonic Deduction on Asynchronous Information Flows

Monotonic deductions are a natural match for protocols which exchange

stable knowledge about system state—for example whether a specific

message has reached at least N participants, or whether a control message

has received acknowledgment from f + 1 replicas. These properties are

examples of stable predicates; once they become true, they will remain true

for all time. Control decisions which are based only on stable predicates

will therefore themselves be stable; no matter how far behind a replica

is, if it takes an action based only on some true stable predicates, then

that action cannot have depended on any messages the replica has yet to

receive, and thus was safe to take.

For example, we could rephrase Paxos as a sequence of stable deductions

over monotonic system state. We begin by phrasing control information
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as set of counters and booleans which track which messages have been

delivered, received, or acknowledged by each replica, and which failures

are currently suspected by each replica. We then use simple monotonic

functions—like max, min, and addition—to aggregate over shared counters

and booleans. Critically, monotonicity is compositional; as these operations

preserve the ordering of their inputs, all predicates comprised of com-

positions of these operators will always, constructively, be stable. Under

the reasonable assumption that the boolean values false and true are

ordered with false < true, if some monotonic computation returns true

in some state, then for it to return false in some greater state would

require the computation to produce a lesser value on greater input; this

contradicts monotonicity, and would only be possible if one of the con-

stituent computations was non-monotonic. And as the underlying data is

itself monotonic, we can be assured that, at all points, all later states are in

fact greater than (or equal to) the current state.

Monotonic predicates permit discovery of ordered deliverability or safety

for sets of messages, which can then be delivered as a batch. Notice that

this batching occurs on the receivers, and will not be synchronized across

the set: different receivers might discover safety for different batches. The

safety deductions are all valid, but the batch sizes are accidents of the

actual thread scheduling on the different receivers.

In contrast, many Paxos protocols use batching, but these batches are

formed by a leader. A given leader first accumulates a batch of requests,

then interacts with the acceptors (log managers) to place the batch into

the Paxos log. Batches are processed one by one, and incoming requests

must wait at various stages of the pipeline.
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Monotonic protocols can achieve high efficiency. Yet notice that the core

question of safety is unchanged: our monotonic phrasing of consensus

still uses a standard Paxos definition. In effect, we have modified the

implementation, but not the logical guarantee.

2.3.2 Introducing the Shared State Table

To support this monotonic reasoning, at the core of Derecho lies a dedi-

cated distributed abstraction: a shared-state table, or SST. The SST offers

a tabular distributed shared memory abstraction. Every member of the

top-level group holds its own replica of the entire table, in local mem-

ory. Within this table, there is one identically formatted row per member.

A member has full read/write access to its own row, but is limited to

read-only copies of the rows associated with other members. This simple

model provides shared memory while eliminating write-write contention

on memory cells, as any given SST row only has a single writer.

Even though any given SST cell has just one writer, notice that a se-

quence of updates to a single SST cell will overwrite one another. If writes

occur continuously, and the reader continuously polls its read-only copy

of that cell, there is no guarantee that they will run in a synchronized

manner. Thus a reader might see the values jump forward, skipping some

intermediary values. To handle this, we build a language atop the SST

which ensures all values in the SST are updated and used monotonically,

preventing computations over the SST from being sensitive to these skips.
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2.3.3 A Monotonic Language for the SST

Built atop the SST is a core language of monotonic combinators, imple-

mented as a library DSL entirely within C++.

2.3.3.1 Projectors and Reducers

The simplest construct in this core language is the projector, a wrapper

which allows programmers to project a value from a row. Generally, pro-

jectors just access some field within the row, although they may perform

more complex reasoning (for example, indexing into a vector). These pro-

jectors are functions with the type Row → T; their primary purpose is

to lift cell access into the combinator language, though they also offer a

convenient place to support variable-length fields and to implement any

needed memory barriers. To ensure the correctness of the program, all

projectors must be monotonic. It is an error to implement a non-monotonic

projector, though as projectors may need to access low-level systems code

we cannot statically enforce monotonicity.

The second SST tool is the reducer function, SST’s primary mechanism

for resolving shared state. A reducer function’s purpose is to produce a

summary of a certain projector’s view of the entire SST; intuitively, it is

run over an entire SST column. Reducers have the signature column → T,

where a column is produced by mapping a projector over a vector[Row].

One can think of reducers as serving a similar role to “merge” functions

often found in eventual consistency literature; they take a set of diver-

gent views of the state of some datum and produce a single summary

of those views. One could also think of reducers as akin to folding an
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operator over a projected column. As with projectors, reducers must be

monotonic; Aggregates such as min, max, and sum are all examples of

reducer functions.

One can lift a Projector into a Reducer by running the projector on a

single row, and ignoring the remaining rows. Conversely, one can build

a Projector out of a Reducer by creating a new column in which to store

the Reducer’s result, and returning the projector which accesses this new

column.

2.3.3.2 Composing programs

New Projectors and Reducers can be built by chaining existing projectors

and reducers. Chaining projectors is straightforward; as each projector

has type T → U for some T and U, one can directly compose a T → U

projector with some other U → V projector through standard function

composition. Applying a projector to the result of a reducer is similarly

straightforward.

Much more interesting is the ability to compose reducers themselves.

In the SST’s core language, composition of reducers corresponds to dis-

tributed computation. To compose two reducers r1 and r2, one first takes r1

and run it at every replica, collecting the results into a vector. This vector

becomes a new “virtual” column in the SST table, upon which r2 may now

run. This “distributed execution” composition effectively takes a reducer

function of type column[T]→ U, and maps it over all the replicas, resulting

in a new function of type vector[column[T]]→ column[U]. As the output

of this lifted reducer is itself a column, it matches the type required for

the input of a reducer, allowing a reducer to be sequenced after it. Our
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language automatically introduces this lifting to handle composition of

reducers.

Note that this is quite similar to the process for converting reducers to

projectors outlined previously; the key difference is that the naive lifting

leaves the remainder of the new column blank, while the distributed

execution fills the entire column with the symmetric execution of the

reducer at all replicas. Both options are available; a programmer may

choose to explicitly chain reducers without a distributed execution via an

explicit naive lifting.

As monotonicity is compositional, any composition of monotonic pro-

jectors and reducers will itself be monotonic. Thus by combining reducers

and projectors, Derecho’s protocols can employ complex predicates over

the state of the entire SST without reasoning directly about the underlying

consistency. Let’s look at an example.

struct SimpleRow {int i;};

int iget(const volatile SimpleRow& s){

return s.i;

}

Projector<int> proj(){

return (Min(as_projector(iget)) > 7 ) || (Max(as_projector(iget)) < 2);

}

Here, function proj lifts the function iget into a projector, calls the

reducers Min and Max on this projector, then uses the boolean operator

reducers to further refine the result. This defines a new composite projector,

returned by proj. This projector reads from a “virtual” column created via

the distributed execution of Min and Max.

This new projector, proj, can do far more. For example, proj can be

associated with a physical column in which its output will be stored. One
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can also register a trigger to fire when the projector has attained a specific

value. An extended example demonstrates this:

enum class Names {Simple};

SST<T> build_sst(){

auto predicate = associate_name(Names::Simple, proj());

SST<T> sst = make_SST<T>(predicate);

std::function<void (volatile SST<T>&)> act = [](...){...};

sst->registerTrigger(Names::Simple, act);

return sst;

}

Here proj has been associated with the name Simple chosen from an

enum class Names, allowing us to register the trigger act to fire whenever

proj becomes true. As shown here, a trigger is simply a function of type

volatile SST<T>& → void with one important restriction: it must ensure

stability of registered predicates, and cannot depend on exact values in the

SST without first ensuring those values are up-to-date. If the result of a

trigger can never cause a previously-true predicate to turn false, reasoning

about the correctness of one’s SST program becomes easy. Using this

combination of projectors, predicates, and triggers, one can effectively

program against the SST at a nearly declarative high level, proving an

excellent fit for protocols matching the common pattern “when everyone

has seen event X, start the next round.”

Interestingly, programming via composition of projectors and reducers

has a natural comonadic structure over the SST, when the SST is viewed

as a vector of Rows. We choose to demonstrate this comonad structure by

defining an extract (counit), doubling, and map; composing doubling and

map yields extend (cobind).
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Extract is built into projectors. Projectors are always evaluated on the

row “owned” by the current replica; the function which selects this row

has type vec[Row] → Row, and satisfies the requirements of extract.

Duplication corresponds to “perfect replication”: if a replica knows that

its SST is identical to all other SSTs, then that replica can simulate any

distributed computation by simply running it on copies of its local SST.

The function which copies the SST is doubling, and it has the signature

vec[Row] → vec[vec[Row]].

Map corresponds to the distributed execution of reducers. Distributed ex-

ecution of reducers has type (vec[T] → U) → vec[vec[T]] → vec[U],

producing a system-wide summary of a single column. We can general-

ize reducers to operate against entire rows rather than single columns,

giving the type (vec[Row] → U) → vec[vec[Row]] → vec[U] to their

distributed executor. Composing doubling and map yields cobind:

(vec[Row] → U) → vec[Row] → vec[U]).

We believe that further exploration of this comonadic structure is war-

ranted, and could form an excellent basis by which to prove properties of

the core SST language.

2.3.4 Considerations for Programming against the SST

2.3.4.1 Encoding Knowledge Protocols in SST

SST predicates have a natural match to the logic of knowledge [Halpern

and Moses, 1990], in which we design systems to exchange knowledge in

a way that steadily increases the joint “knowledge state.” Suppose that

rather than sharing raw data via the SST, processes share the result of
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computing some predicate. In the usual knowledge formalism, we would

say that if pred is true at process P, then P knows pred, denoted KP(pred).

Now suppose that all members publish the output of the predicate as each

learns it, using a bit in their SST rows for this purpose. By aggregating this

field using a reducer function, process P can discover that someone knows

pred, that everyone knows pred, and so forth. By repeating the same pattern,

group members can learn K1(pred): every group member knows that every

other member knowspred.

2.3.4.2 Stable, Monotonic Predicates

Earlier, we defined a monotonic predicate to be a stable predicate defined

over a monotonic variable v such that once the predicate holds for value v,

it also holds for every v′ ≥ v. Here is further evidence that one should think

about these protocols as forms of knowledge protocols. Doing so gives a

sharp reduction in the amount of SST space required by a protocol that

runs as a sequence of rounds. With monotonic variables and predicates,

process P can repeatedly replace values in its SST row with greater ones.

As P’s peers within the group compute they might see very different

sequences of updates, yet all processes will eventually converge on the

same set of stable predicates.

For example, with a counter, P might rapidly sequence through increas-

ing values. Now, suppose that Q is looping and sees the counter at values

20, 25, 40. Meanwhile, R sees 11, then 27, 31. If the values are used in

monotonic predicates and some deduction was possible when the value

reached 30, both will make that deduction even though they saw distinct

values and neither was actually looking at the counter precisely when 30
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Figure 2.7: SST example with three members, showing some of the fields used by
our algorithm. Each process has a full replica, but because push events
are asynchronous, the replicas evolve asynchronously and might be
seen in different orders by different processes.

was reached. If events might occur millions of times per second, this style

of reasoning enables a highly pipelined protocol design.

2.3.4.3 Fault Tolerance and Monotonicity

Crash faults introduce a number of non-trivial issues specific to the SST in

Derecho. Failure detection needs to run alongside all other protocols, atop

the same core language for the SST. This in turn means failure detection

can only be based on monotonic state: when a node communicates a failure

suspicion it can never revoke that suspicion lest it violate monotonicity.

To accommodate this we adopt the following approach. We dedicate

an entire column in the SST to failure suspicions for each node. A cell in

that column corresponds to a failure suspicion reported by the cell’s row.

Failure detection is simply a max operation over the column. If any node

suspects a failure, then it must:

1. Freeze its copy of the SST row associated with the failed group

member (this breaks its RDMA connection to the failed node);

2. Update its own row to report the new suspicion (via the “Suspected”

boolean fields seen in Figure 2.7);
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3. Immediately replicate its row to every other process (excluding those

its considers to have failed).

We additionally register a failure propagation trigger for each failure

suspicion column, causing any node which observes a suspected failure to

take the same steps as though it had detected the failure itself.

Derecho currently uses hardware failure detection as its source of failure

suspicions, although we also support a user-callable interface for reporting

failures discovered by the software. In many applications the SST itself can

be used to share heartbeat information by simply having a field that reports

the current clock time and pushing the row a few times per second; if such

a value stops advancing, whichever process first notices the problem can

treat it as a fault detection.

Thus, if a node has crashed, the SST will quickly reach a state in which

every non-failed process suspects the failed one, has frozen its SST row,

and has pushed its own updated row to its peers. However, the SST’s

implementation (section 2.5) does not use a reliable multicast primitive for

replication; this can leave an SST write partially replicated causing the SST

replicas to not be identical. In particular, the frozen row corresponding to

a failed node could differ if some SST push operations failed midway.

Were this the entire protocol, the SST would be at risk of logical partition-

ing. To prevent such outcomes, we shut down any process that suspects a

majority of members of the Derecho top-level group (in effect, such a pro-

cess deduces that it is a member of a minority partition). Thus, although

the SST is capable (in principle) of continued operation in a minority parti-

tion, Derecho does not use that capability and will only make progress so



116 derecho

long as no more than a minority of top-level group members are suspected

of having failed.

2.3.4.4 Stable, Fault-Tolerant Monotonic Reasoning.

A next question to consider is the interplay of failure handling with

knowledge protocols. The aggressive epidemic-style propagation of failure

suspicions transforms a suspected fault into monotonic knowledge that

the suspected process is being excluded from the system: P’s aggressive

push ensures that P will never again interact with a member of the system

that does not know of the failure, while Derecho’s majority rule ensures

that any minority partition will promptly shut itself down.

This conflicts with the eventual guarantees we relied on for the correct-

ness of our monotonic reasoning. We must consider an outcome where

process P discovers that pred holds and acts on that knowledge, but then

crashes. The failure might freeze the SST rows of in such a way that no

surviving process can deduce that pred held at P, leaving uncertainty about

whether or not P might have acted on pred prior to crashing.

To solve this, we make two observations. First, we observe that the

correctness of a system is usually phrased only in terms of the behavior

of its correct processes; as P has acted on pred “after” it has failed, that

action may be ignored provided it does not impact correct processes. In cases

where such an action might in fact impact correct processes, there is a

different way to eliminate this uncertainty: before acting on pred, P can

share its discovery that pred holds. In particular, suppose that when P

discovers pred, it first reports this via its SST row, pushing its row to all

other members before acting on the information. With this approach, there

are two ways of learning that pred holds: process Q can directly deduce
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that pred has been achieved, but it could also learn pred indirectly by

noticing that P has done so. If P possessed knowledge no other process

can deduce without information obtained from P, it thus becomes possible

to learn that information either directly (as P itself did, via local deduction)

or indirectly (by obtaining it from P, or from some process that obtained

it from P). If information reaches a quorum, then it will survive even if,

after a crash, the property itself is no longer directly discoverable! With

stable predicates, indirect discovery that a predicate holds is as safe as

direct evaluation. By combining this behavior with monotonic predicates,

the power of this form of indirection is even greater.

Care must be taken when using this design pattern; it must be the case

that replicas can discover not just that pred holds, but that any predicate

implied by a combination of their local state with the local state that

justified pred will also hold. If the projectors used to compute pred are

also used to compute other predicates, then the values of these common

projectors must be reflected to the SST alongside pred. For projectors

built by composing reducers from the monotonic SST DSL this is handled

automatically; for custom projectors written in C++, it must be ensured by

the programmer.

Notice also that when Derecho’s majority rule is combined with this

fault tolerant learning approach, P either pushes its row to a majority of

processes in the epoch, then can act upon the knowledge it gained from

pred, or P does not take action and instead crashes or throws a partitioning

fault exception (while trying to do the push operation). Since any two

majorities of the top-level group have at least one process in common, in

any continued run of the system, at least one process would know of P’s
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deduction that pred holds. This will turn out to be a powerful tool in what

follows.

2.4 membership management with virtually-synchronous

paxos

We used the SST’s monotonic language to implement virtually synchronous

Paxos, which combines a membership-management protocol that was

created as part of the Isis Toolkit [K. P. Birman and T. A. Joseph, 1987] with

a variation of Paxos. The virtually synchronous Paxos model was originally

suggested by Malkhi and Lamport at a data replication workshop in

Lugano. Later, the method was implemented in a distributed-systems

teaching tool called Vsync, and described formally in Chapter 22 of [K. P.

Birman, 2012].

The virtual synchrony model focuses on the evolution of a process group

through a series of epochs. An epoch starts when new membership for

the group is reported (a new view event). The multicast protocol runs in

the context of a specific epoch, sending totally ordered multicasts to the

full membership and delivering messages only after the relevant safety

guarantees have been achieved. These include total ordering, the guarantee

that if any member delivers a message then every non-failed member will

do so2, An epoch ends when some set of members join, leave, or fail. This

could occur while a multicast is underway, resulting either in the multicast

being delivered (if it had reached all surviving participants before view

change) or by reissuing it (preserving sender ordering) in the next epoch.

2 The original Isis formulation added an optional early-delivery feature: multicasts could be
delivered early, creating an optimistic mode of execution. A stability barrier (flush), could
then be invoked when needed. Derecho omits this option.
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Figure 2.8: Each Derecho group has one RDMC subgroup per sender (in this ex-
ample, members P and Q) and an associated SST. In normal operation,
the SST is used to detect multi-ordering. During membership changes,
the SST is used to select a leader. It then uses the SST to decide which
of the disrupted RDMC messages should be delivered and in what
order; if the leader fails, the procedure repeats.

2.4.1 Delivery and Reconfiguration Protocols

To avoid burdening the reader with excessive detail, we limit ourselves to

a brief overview. Derecho’s protocols, implemented by Birman and Jha

atop the SST, can be found in full detail in the Derecho journal paper [Jha

et al., 2019].

Derecho’s core structure can be seen in Figure 2.8. We map the top-

level group to a set of subgroups, which may additionally be sharded.

Here there is see one subgroup. For each active sender, Derecho needs an

SMC or RDMC session (section 2.5) that will be used to stream multicasts

reliably and in sender-order to the full group; in the figure, two such

sessions are in use, one from sender P and one from sender Q. The group

view is seen on the top right, and below it, the current SST for the group.

The columns in the SST are used by group members to share status.

From the left, there is a vector of booleans denoting failure suspicions (in
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the example shown, Q has just failed, and P is aware of the event and

hence “suspects” Q, shown in red). Eventually this will trigger a new view

in which Q will have been removed.

Next come view-related SST columns, used by the top-level group leader

to run a Paxos-based protocol that installs new views. We’ll discuss this in

moment.

To the right is a set of columns labeled “nReceived.” These are counts of

how many messages each group member has received from each sender.

For example, in the state shown, R has received 5 multicasts from P, via

RDMC. To minimize unnecessary delay, Derecho uses a simple round-

robin delivery order: each active sender can provide one multicast per

delivery cycle, and the messages are delivered in round-robin order. Dere-

cho has built-in mechanisms to automatically send a null message on

behalf of a slow sender, and will reconfigure to remove a process from the

sender set if it remains sluggish for an extended period of time. Thus in

the state shown, P and Q are both active, and messages are being delivered

in order: P:1, Q:1, P:2, Q:2, etc.

Derecho delivers atomic multicasts when (1) all prior messages have

been delivered, and (2) all receivers have reported receipt of a copy, which

is determined as an aggregate over nReceived. Notice the monotonic

character of this delivery rule: an example of receiver-side monotonic

reasoning.

In this example, messages can be delivered up to P:4, but then an issue

arises. First, P is only acknowledging receipt of Q’s messages through Q:3.

Thus messages up to P:4 can be delivered, but subsequent ones are in

a temporarily unstable state. Further, the failure is causing the group to

wedge, meaning that P has noticed the failure and ceased to send or deliver
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new messages (wedged bit is true on the far right). Soon, R will do so as

well. Q’s row is ignored in this situation, since Q is suspected of having

crashed.

Once the group is fully wedged by non-faulty members, the view-change

protocol takes over. This protocol mixes aspects of monotonic reasoning

(derived from the SST) with the traditional virtually-synchronous consen-

sus protocol of [K. P. Birman and T. A. Joseph, 1987]. The lowest-ranked

unsuspected process (P in this view) will propose a new view, but will also

propose a final delivery “count” for messages, called a “ragged trim.” P

itself could fail while doing so, hence a new leader first waits until the old

leader is suspected by every non-faulty group participant. Then it scans

the SST. Within the SST, we include columns with which participants echo

a proposed ragged trim, indicate the rank of the process that proposed

it, and indicate whether they believe the ragged trim to have committed

(become final). The sequence ensures that no race can occur: the scan of

the SST will only see rows that have been fully updated.

This pattern results in a form of iteration: each successive leader will

attempt to compute and finalize a ragged trim, iterating either if some new

member failure is sensed, or the leader itself fails. This continues until

either a majority is lost (in which case the minority partition shuts down),

or eventually, some leader is not suspected by any correct member, and is

able to propose a ragged trim, and a new view, that a majority of the prior

members acknowledge. The protocol then commits. We have formalized

this protocol as an I/O automata in the Ivy theorem prover [Padon et al.,

2016].The ragged trim is used to finalize multicasts that were running in

the prior view, and Derecho can move to the next view. The property just

described is closely related to the weakest condition for progress in the
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Chandra / Toueg consensus protocol, and indeed the Derecho atomicity

mechanism is very close to the atomicity mechanism used in that protocol

[T. Chandra and Toueg, 1996].

An important detail of the view-change protocol is that it is explicitly

non-monotonic. The view-change protocol allows the leader to compute

an entirely new SST, with initial values set by through the ragged trim

protocol. This new SST is discontinuous with the old; it is not ensured that

all possible stable predicates over the old SST will hold in the new. Instead,

we must manually ensure that all relevant predicates remain true in the

new SST, while allowing some predicates—for example failure detection—

to reset. We should again emphasize that this view-change protocol is

simply a rephrasing of protocols which have been proved correct in prior

work. Nevertheless, our encoding of the Derecho view-change protocol

in the Ivy theorem prover gives us faith that the protocol remains correct

even with the changes we made to leverage monotonicity.

2.5 background : the system details of the sst

As a collaboration between many individuals, Derecho’s core protocols are

built upon abstractions which should not be included in the contributions

of this thesis.

In particular Derecho moves data using a pair of zero-copy reliable

multicast abstractions, SMC (due to Jha) and RDMC (due to Behrens),

both of which guarantee that messages will be delivered in sender order

without corruption, gaps or duplication, but lack atomicity for messages

underway when some member crashes. The protocols in section 2.4.1 sense
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such situations and clean up after a failure. SMC and RDMC are both

single-sender, multiple receiver protocols.

These reliable multicast primitives—in particular RDMC [Behrens et al.,

2018]— provide a powerful abstraction, allowing data to move across the

system at unprecedented speeds. But it is indeed primitive; using RDMC

requires that the application track membership and arrange for message

delivery endpoints to simultaneously set up each needed session, select

a sender, and coordinate to send and receive data on it. With multiple

senders to the same group of receivers, RDMC provides no ordering on

concurrent messages. When a failure occurs, a receiver reports the problem,

stops accepting new RDMC messages, and “wedges,” but takes no action

to clean up disrupted multicasts.

This is where protocols implemented over the SST come in. Section 2.4.1

demonstrated how the SST’s core monotonic language can be used to

implement Derecho’s delivery protocols. This section reviews the system

details of the SST itself, and how Derecho leverages RDMA and cache-line

atomicity to ensure correct and performant behavior.

Recall that the SST is a set of single-writer, multi-reader registers ar-

ranged in a table with a single writer per table row. To share data using the

SST, a process updates its local copy of its own row, then pushes the row

to other group members by enqueuing a set of asynchronous one-sided

RDMA write requests. The SST also supports pushing just a portion of the

row, or pushing to just a subset of other processes.

Even though any given SST cell has just one writer, notice that a se-

quence of updates to a single SST cell will overwrite one another. If writes

occur continuously, and the reader continuously polls its read-only copy

of that cell, there is no guarantee that they will run in a synchronized
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manner. Thus a reader might see the values jump forward, skipping some

intermediary values. This is where the monotonicity of values stored in

the SST comes in: by ensuring all values in the SST are updated and read

monotonically, computations over the SST cannot be sensitive to these

skips.

We must still ensure, however, that this non-determinism cannot cause

write-skew when reading individual values. The SST guarantees that

writes are atomic at the granularity of cache lines, typically 64 bytes in

size. The C++ 14 compiler aligns variables so that no native data type

spans a cache line boundary, but this means that if an entire vector is

updated, the actual remote updates will occur in cache-line sized atomic

chunks. Accordingly, when updating multiple entries in a vector, we take

advantage of a different property: RDMA writes respect the sender’s FIFO

ordering, in that multiple RDMA datagrams are applied at the target node

sequentially. Thus, we can guard the vector within the SST with a counter,

provided that we update the vector first and then the counter in a separate

datagram. When a reader sees the guard change, it is safe for it to read

the guarded vector elements. It can then acknowledge the data, if needed,

via an update to its own SST row.

In the most general case, an SST push transfers a full row to N− 1 other

members. Thus, if all members of a top-level group were actively updating

and pushing entire rows in a tree-structured network topology, the SST

would impose an N2 load on the root-level RDMA switches. Derecho takes

a number of steps to ensure that this situation will not be common. Most

of the protocols update just a few columns, so that only the modified

bytes need to be pushed. RDMA scatter-gather is employed to do all the

transfers with a single RDMA write: an efficient use of the hardware.
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Figure 2.9: SST example with two members: P and Q. P has just updated its row,
and is using a one-sided RDMA write to transfer the update to Q,
which has a stale copy. The example, discussed in the text, illustrates
the sharing of message counts and confirmations.

Furthermore, these updates are often of interest to just the members of

some single shard or subgroup, and hence only need to be pushed to

those processes. Thus the situations that genuinely involve all-to-all SST

communication most often involve just 2 or 3 participants. We have never

seen a situation in which the SST was a bottleneck.

2.6 performance evaluation

This performance evaluation is presented to give context to this chapter

and lend credence to its claims; the only components of this analysis

carried out as part of this thesis involved the overheads of Derecho’s

object replication layer. Other results report on the raw speed of core

Derecho components [Behrens et al., 2018; Jha et al., 2019], and the speed

of Derecho’s replication and recovery atop those core protocols [Jha et al.,

2019].

Our experiments seek to answer the following questions:

• How do the core state machine replication protocols perform on

modern RDMA hardware, and on data-center TCP running over
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100Gbps Ethernet? We measure a variety of metrics but for this

section report primarily on bandwidth and latency.

• If an application becomes large and uses sharding heavily for scale,

how will the aggregate performance scale with increasing numbers

of members? Here we explore both Derecho’s performance in large

subgroups and its performance with large numbers of small shards

(2 or 3 members, with or without overlap; for the overlap case, we

created 2 subgroups over the same members). These experiments

ran on a shared network with some congested TOR links, and in

the overlapping shards case, the test itself generated overlapping

Derecho subgroups. Thus any contention-triggered collapse would

have been visible.

• Looking at the end-to-end communication pipeline, how is time

spent? We look at API costs (focusing here on polymorphic method

handlers that require parameter marshalling and demarshalling;

Derecho also supports unmarshalled data types, but of course those

have no meaningful API costs at all) and delivery delay.

• How does the performance of the system degrade if some members

are slow?

• How long does the system require to reconfigure an active group?

• How does Derecho compare with other libraries for state machine

replication—in particular APUS, LibPaxos and ZooKeeper?

In what follows, the small-scale experiments were performed on our

local cluster, Fractus. For larger experiments, we used Stampede 1, a

supercomputing cluster in Texas. Fractus consists of 16 machines running
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Ubuntu 16.04 connected with a 100Gbps (12.5 GB/s) RDMA InfiniBand

switch (Mellanox SB7700). The machines are equipped with Mellanox

MCX456AECAT Connect X-4 VPI dual port NICs. Stampede contains

6400 Dell Zeus C8220z compute nodes with 56G (8 GB/s) FDR Mellanox

NIC, housed in 160 racks (40 nodes/rack). The interconnect is an FDR

InfiniBand network of Mellanox switches, with a fat tree topology of eight

core-switches and over 320 leaf switches (2 per rack) with a 5/4 bandwidth

oversubscription. Nodes on Stampede are batch scheduled with no control

over node placement. Node setup for our experiments consists of about 4

nodes per rack. Although network speeds are typically measured in bits

per second, our bandwidth graphs use units of GB/s simply because one

typically thinks of replicated objects in terms of bytes.

2.6.1 Core Protocol Performance

Figure 2.10 measures Derecho performance on 2 to 16 nodes on Fractus.

The experiment constructs a single subgroup containing all nodes. Each of

the sender nodes sends a fixed number of messages (of a given message

size) and time is measured from the start of sending to the delivery of

the last message. In these experiments, “senders” behave like continuous

writers: all senders are constantly pumping messages into the system at

the maximum achievable rate, all of which need to be totally ordered.

Bandwidth is then the aggregated rate of sending of the sender nodes. We

plot the throughput for totally ordered (atomic multicast) mode.

We see that Derecho performs close to network speeds for large message

sizes of 1 and 100 MB, with a peak rate of 16 GB/s. In unreliable mode,
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Derecho’s protocol for sending small messages, SMC, ensures that we

get high performance (close to 8 GB/s) for the 10 KB message size; we

lose about half the peak rate in totally-ordered atomic multicast. As ex-

pected, increasing the number of senders leads to a better utilization of the

network, resulting in better bandwidth. For the large message sizes, the

time to send the message dominates the time to coordinate between the

nodes for delivery, and thus unreliable mode and totally ordered (atomic

multicast) mode achieve similar performance. For small message sizes (10

KB), those two times are comparable. Here, unreliable mode has a slight

advantage because it does not perform global stability detection prior to

message delivery.

Not shown is the delivery batch size; at peak rates, multicasts are

delivered in small batches, usually the same size as the number of active

senders, although now and then a slightly smaller or larger batch arises.

Since we use a round-robin delivery order, the delay until the last sender’s

message arrives will gate delivery, as we will show momentarily, when

explaining Figure 2.15b.

Notice that when running with 2 nodes at the 100MB message size,

Derecho’s peak performance exceeds 12.5 GB/s. This is because the net-

work is bidirectional, and in theory could support a data rate of 25GB/s

with full concurrent loads. With our servers, the NIC cannot reach this full

speed because of limited bandwidth to the host memory units.
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Figure 2.10: Derecho’s RDMA performance with 100Gbps InfiniBand.
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Figure 2.11: Derecho performance using TCP with 100Gbps Ethernet.

2.6.2 Large Subgroups, with or without Sharding

Earlier, we noted that while most communication is expected to occur

in small groups, there will surely also be some communication in larger

ones. To explore this case, we ran the same experiment on up to 128

nodes on Stampede. The resulting graph, shown in Figure 2.12, shows that

Derecho scales well. For example we obtain performance of about 5GB/s

for 1MB-all-senders on 2 nodes, 2.5 GB/s on 32 nodes, and 2 GB/s on 128

nodes: a slowdown of less than 3x. Limitations on experiment duration

and memory prevented us from carrying out the same experiment for the

100 MB case on 64 and 128 nodes. This also explains the absence of error
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bars: each data point shown corresponds to a single run of the experiment.

Note, however, that the performance obtained is similar to that seen on

Fractus for small groups.

Next, we evaluate performance in an experiment with a large sharded

group. Here, the interesting case involves multiple (typically small) sub-

groups sending messages simultaneously, as might arise in a sharded

application or a staged computational pipeline. We formed two patterns

of subgroups of fixed size: disjoint and overlapping. For a given set of n

nodes, assume unique node ids from 0 to n− 1. Disjoint subgroups parti-

tion the nodes into subgroups of the given size. Thus, disjoint subgroups

of size s consist of n/s subgroups where the ith subgroup is composed of

nodes with ids s ∗ i, s ∗ i + 1, . . . , s ∗ (i + 1)− 1. Overlapping subgroups of

size s, on the other hand, place every node in multiple (s) subgroups. They

consist of n subgroups where the the ith subgroup is composed of nodes

i, i + 1, ..., i + s− 1 (wrapping when needed).

We tested with overlapping and disjoint subgroups of sizes 2 and 3. All

nodes send a fixed number of messages of a given message size in each of

the subgroups they belong in. The bandwidth is calculated as the sum of

the sending rate of each node. Figure 2.13 shows that for large messages
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(100 MB), the aggregated performance increases linearly with the number

of nodes for all subgroup types and sizes. This is as expected; the subgroup

size is constant, and each node has a constant rate of sending, leading to a

linear increase in aggregated performance with the number of nodes.

We do not include data for small messages (10 KB) because this par-

ticular case triggered a hardware problem: the “slow receiver” issue that

others have noted in the most current Mellanox hardware [Guo et al.,

2016].

2.6.3 Resilience to Contention

The experiments shown above were all performed on lightly loaded ma-

chines. Our next investigation explores the robustness of control plane/-

data plane separation and batching techniques for Derecho in a situ-

ation where there might be other activity on the same nodes. Recall

that traditional Paxos protocols degrade significantly if some nodes run

slowly [Marandi et al., 2014]. The issue is potentially a concern, because in
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Figure 2.14: Derecho performance for various values for efficiency and number
of slow nodes, as a fraction of the no-slowdown case.
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multi-tenancy settings or on busy servers, one would expect scheduling

delays. In Derecho, we hope to avoid such a phenomenon.

Accordingly, we designed an experiment in which we deliberately

slowed Derecho’s control infrastructure. We modified the SST predicate

thread by introducing artificial busy-waits after every predicate evalu-

ation cycle. In what follows, we will say that a node is working at an

efficiency of X% (or a slowdown of (100− X)%), if it is executing X pred-

icate evaluation cycles for every 100 predicate evaluation cycles in the

normal no-slowdown case. The actual slowdown involved adding an extra

predicate that measures the time between its successive executions and

busy-waits for the adjusted period of time to achieve a desired efficiency.

In contrast, we did not slow down the data plane: RDMA hardware per-

formance would not be impacted by end-host CPU activity or scheduling.

Further, our experiment sends messages without delay.

In many settings, only a subset of nodes are slow at any given time.

To mimic this in our experiment, for a given efficiency of X%, we run

some nodes at X% and others at full speed. This enables us to vary the

number of slow nodes from 0 all the way to all the nodes, and simplifies

comparison between the degraded performance and the no-slowdown

case. The resulting graph is plotted in Figure 2.14.

The first thing to notice in this graph is that even with significant

numbers of slow nodes, performance for the large messages is minimally

impacted. This is because with large messages, the RDMA transfer times

are so high that very few control operations are needed, and because

the control events are widely spaced, there are many opportunities for a

slowed control plane to catch up with the non-slowed nodes. Thus, for 90%
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slowdown, the performance is more than 98.5% of the maximum while for

99% slowdown (not shown in the graph), it is about 90%.

For small messages (sent using SMC), the decrease in performance is

more significant. Here, when even a single node lags, its delay causes all

nodes to quickly reach the end of the sending window and then to wait for

previous messages to be delivered. Nonetheless, due to the effectiveness

of batching, the decrease in performance is less than proportional to the

slowdown. For example, the performance is 70% of the maximum in case

of 50% slowdown and about 15% for a 90% slowdown.

Notice also that performance does not decrease even as we increase the

number of slow nodes. In effect, the slowest node determines the perfor-

mance of the system. One can understand this behavior by thinking about

the symmetry of the Derecho protocols, in which all nodes independently

deduce global stability. Because this rule does not depend on a single

leader, all nodes proceed independently towards delivering sequence of

messages. Further, because Derecho’s batching occurs on the receivers,

not the sender, a slow node simply delivers a larger batch of messages

at a time. Thus, whether we have one slow node or all slow ones, the

performance impact is the same.

From this set of experiments, we conclude that Derecho performs well

with varying numbers of shards (with just minor exceptions caused by

hardware limitations), that scheduling or similar delays are handled well,

and that the significant performance degradation seen when classic Paxos

protocols are scaled up are avoided by Derecho’s novel asynchronous

structure.

Next, we considered the costs associated with membership changes.
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2.6.4 Costs of Membership Reconfiguration

In Figure 2.15a we see the bandwidth of Derecho multicasts in an active

group as a join or leave occurs. The three accompanying figures break

down the actual sequence of events that occurs in such cases, based on

detailed logs of Derecho’s execution. Figure 2.15b traces a single multicast

in an active group with multiple senders. All red arrows except the first

set represent some process putting information into its SST row (arrow

source) that some other process reads (arrow head); the first group of red

arrows, and the background green arrows, represent RDMC multicasts.

At 1 process 0 sends a 200MB message: message (0,100). RDMC delivers

it about 100ms later at 2 , however, Derecho must buffer it until it is

multi-ordered. Then process 3’s message (3,98) arrives ( 3 - 4 ) and the

SST is updated ( 4 , 6 ), which enables delivery of a batch of messages at

7 . These happen to be messages (2,98)...(1,99). At 8 process 3’s message

(3,99) arrives, causing an SST update that allows message 100 from process

0 to finally be delivered ( 9 - 10 ) as part of a small batch that covers (2,99)

to (1,100). Note that this happens to illustrate the small degree of delivery

batching predicted earlier.

In Figure 2.16a we see a process joining: 1 it requests to join, 2 - 6

are the steps whereby the leader proposes the join, members complete

pending multicasts, and finally wedge. In steps 7 - 9 the leader computes

and shares the trim; all processes trim the ragged edge at 9 and the leader

sends the client the initial view ( 10 ). At 11 we can create the new RDMC

and SST sessions, and the new view becomes active at 12 . Figure 2.16b
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(a) Derecho multicast bandwidth with
200MB messages. A new member joins

at 10s, then leaves at 20s.
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Figure 2.15: Multicast bandwidth (left), and a detailed event timeline (right).
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Figure 2.16: Timeline diagrams for Derecho.

shows handling of a crash; numbering is similar except that here, 4 is the

point at which each member wedges.

For small groups sending large messages, the performance-limiting

factor involves terminating pending multicasts and setting up the new SST

and RDMC sessions, which cannot occur until the new view is determined.

This also explains why in Figure 2.15a the disruptive impact of a join or

leave grows as a function of the number of active senders: the number of

active sends and hence the number of bytes of data in flight depends on

the number of active senders. Since we are running at the peak data rate

RDMA can sustain, the time to terminate these sends is dominated by the



136 derecho

10K 1M 100M
Message Size (Byte)

0

2

4

6

8

10

12

14

16

18

B
an

dw
id

th
 (G

B
/s

)

Derecho APUS

(a) Throughput

10K 1M 100M
Message Size (Byte)

100

101

102

103

104

105

106

107

108

109

A
to

m
ic

 M
ul

tic
as

ts
/s

Derecho APUS

(b) Multicast Rate

Figure 2.17: Derecho vs APUS with Three Nodes over 100Gbps InfiniBand.
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Figure 2.18: Derecho vs LibPaxos and ZooKeeper with Three Nodes over
100Gbps Ethernet.

amount of data in flight. In experiments with 20MB messages the join and

leave disruptions are both much shorter.

2.6.5 Comparisons with Other Systems

Using the same cluster on which we evaluated Derecho, we conducted a se-

ries of experiments using competing systems: APUS, LibPaxos, ZooKeeper.

All three systems were configured to run in their atomic multicast (in-

memory) modes. APUS runs on RDMA, hence we configured Derecho to

use RDMA for that experiment. LibPaxos and ZooKeeper run purely on

TCP/IP, so for those runs, Derecho was configured to map to TCP.
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The comparison with APUS can be seen in Figure 2.17. We focused on

a 3-member group, but experimented at other sizes as well; within the

range considered (3, 5, 7) APUS performance was constant. APUS does not

support significantly larger configurations. As seen in these figures, Dere-

cho is faster than APUS across the full range of cases considered. APUS

apparently is based on RAFT, which employs the pattern of two-phase

commit discussed earlier, and we believe this explains the performance

difference.

Comparison of Derecho atomic multicast with the non-durable configu-

rations of LibPaxos and ZooKeeper are seen in Figure 2.18 (Zookeeper

does not support 100MB writes, hence that data point is omitted). Again,

we use a 3-member group, but saw similar results at other group sizes.

LibPaxos employs the Ring Paxos protocol, which is similar to Derecho’s

protocol but leader-based. Here the underlying knowledge exchange is

equivalent to a two-phase commit, but the actual pattern of message

passing involves sequential token passing on a ring.

The comparison with ZooKeeper is of interest, because here there is

one case (10KB writes) where ZooKeeper and Derecho have very similar

performance over TCP. Derecho dominates for larger writes, and of course

would be substantially faster over RDMA (refer back to Figure 2.11b). On

TCP, the issue is that Derecho is somewhat slow for small writes, hence

what we are seeing is not so much that ZooKeeper is exceptionally fast, but

rather that the underlying communications technology is not performing

terribly well, and both systems are bottlenecked.

More broadly, Derecho’s “sweet spot,” for which we see its very highest

performance, involves large objects, large replication factors, and RDMA
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hardware. The existing systems, including APUS, simply do not run in

comparable configurations and with similar object sizes.

As a final remark, we should note that were we to compare Derecho’s

peak RDMA rates for large objects in large groups with the best options

for implementing such patterns in the prior systems (for example, by

breaking a large object into smaller chunks so that ZooKeeper could

handle them), Derecho would be faster by factors of 30x or more. We omit

such cases because they raise apples-to-oranges concerns, despite the fact

that modern replication scenarios often involve replication of large objects

both for fault-tolerance (small numbers of replicas suffice) and for parallel

processing (here, large numbers may be needed).

2.6.6 Additional Experimental Findings

We also studied API costs. Say that a multicast that sends just a byte array

is “uncooked,” while a multicast that sends a polymorphic argument list is

“cooked.” We measured the cost of the cooked RPC framework on simple

objects, but discovered it added no statistically significant difference in

round-trip time compared to the uncooked case (discounting the initial

copy of the RPC arguments into Derecho’s sending buffers, a step which

can sometimes be avoided for an uncooked send when the data is already

in memory, for example after a DMA read from a camera). The primary

finding in this work was that copying of any kind can lead to significant

delays. Thus applications seeking to get the best possible performance

from Derecho should use “zero copy” programming techniques as much

as feasible. Within the Derecho API, we avoid copying arguments if the
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underlying data format is suitable for direct transmission, and on receipt,

we don’t create copies of incoming objects so long as the event handler

declares its argument to be a C++ const reference. Qualifying arguments

const allows Derecho to re-use the internal buffers into which arguments

were received, avoiding any copying in the process of invoking an RPC.

None of those experiments uncovered any signs of trouble: if anything,

they support our belief that Derecho can run at extremely large scale, on a

wide variety of platforms, and in multi-tenant environments.

2.7 prior work

Paxos. While we did not create Derecho as a direct competitor with

existing Paxos protocols, it is reasonable to compare our solution with

others. As noted in our experimental section, we substantially outperform

solutions that run on TCP/IP and are faster than or “tied with” solutions

that run on RDMA. Existing RDMA Paxos protocols lack the asynchronous,

receiver-batched aspects of our solution. As a result, Derecho exhibits

better scalability without exhibiting the form of bursty behavior observed

by Marandi and Jalili [Marandi et al., 2014].

With respect to guarantees offered, the prior work on Paxos is obviously

relevant to our paper. The most widely cited Paxos paper is the classic

Synod protocol [Leslie Lamport, 1998], but the version closest to ours is

the virtually synchronous Paxos described by Birman, Malkhi, and van

Renesse [K. P. Birman, 2012]. A number of papers suggest ways to derive

the classic Paxos protocol with the goal of simplifying understanding of its

structure [T. D. Chandra, Griesemer, and Redstone, 2007; Cui et al., 2015;
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B. Lampson, 2001; Mazieres, 2007; Prisco, B. W. Lampson, and N. A. Lynch,

1997; Van Renesse and Altinbuken, 2015]

Among software libraries that offer high-speed Paxos, APUS [Wang

et al., 2017] has the best performance. APUS implements a state-machine

replication protocol related to RAFT, and developed by Mazieres [Mazieres,

2007]. APUS is accessed through a socket extension API, and can replicate

any deterministic application that interacts with its external environment

through the socket. A group of n members would thus have 1 leader that

can initiate updates, and n− 1 passive replicas that track the leader.

Corfu [Balakrishnan et al., 2012] offers a persistent log, using Paxos to

manage the end-of-log pointer,3 and chain-replication as a data-replication

protocol [Renesse and Schneider, 2004]. In the Corfu model, a single log is

shared by many applications. An application-layer library interacts with

the Corfu service to obtain a slot in the log, then replicates data into that

slot. Corfu layers a variety of higher level functionalities over the resulting

abstraction.

Round-robin delivery ordering for atomic multicast or Paxos dates to

early replication protocols [Chang and Maxemchuk, 1984]. Ring Paxos is

implemented in LibPaxos [LibPaxos: Open-source Paxos n.d.], and Guerraoui

(under the direction of Quéma) has proven a different ring Paxos protocol

optimal with respect to its use of unicast datagrams [Guerraoui, Levy, et

al., 2010], but Derecho substantially outperforms both. The key innovation

is that by re-expressing Paxos using asynchronously-evaluated predicates,

3 Corfu has evolved over time. Early versions offered a single log and leveraged RDMA [Bal-
akrishnan et al., 2012], but the current open-source platform, vCorfu [M. Wei et al., 2017]
materializes individualized “views” of the log and has a specialized transactional commit
mechanism for applications that perform sets of writes atomically.
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we can send all data out-of-band. Section 2.6.5 compares performance of

LibPaxos with Derecho.

RAFT [Ongaro and Ousterhout, 2014] is a popular modern Paxos-like

protocol; it was created as a replication solution for RamCloud [Ousterhout

et al., 2011] and was the basis of the protocol used in APUS. Microsoft’s

Azure storage fabric uses a version of Paxos [Calder et al., 2011], but does

not offer a library API. NetPaxos is a new Paxos protocol that leverages

features of SDN networks, though it lacks support for complex, struc-

tured applications [Dang et al., 2015]. DARE [Poke and Hoefler, 2015]

looks at state machine replication on an RDMA network. RDMA-Paxos is

an open-source Paxos implementation running on RDMA [RDMA-Paxos:

Open-source Paxos n.d.]. NOPaxos [Jialin Li et al., 2016] is an interesting

new Paxos protocol that uses the SDN network switch to order concurrent

multicasts, but it does not exploit RDMA. None of these libraries can sup-

port complex structures with subgroups and shards, durable replicated

storage for versioned data, or consistent time-indexed queries. They all per-

form well, but Derecho still equals or exceeds all published performance

measurements.

Atomic multicast. The virtual synchrony model was introduced in the

Isis Toolkit in 1985 [K. P. Birman, 1985], and its gbcast protocol is similar to

Paxos [Leslie Lamport, 1998]. Modern virtual synchrony multicast systems

include JGroups [Ban, 2002] and Vsync [Vsync reliable multicast library

2011], but none of these maps communication to RDMA, and all are far

slower than Derecho. At the slow network rates common in the past, a

major focus was to batch multiple messages into each send [Friedman and

Renesse, 1997]. With RDMA, the better form of batching is on the receiver

side.



142 derecho

Monotonicity. We are not the first to have exploited asynchronous

styles of computing, or to have observed that monotonicity can simplify

this form or protocol, although Derecho’s use of that insight to optimize

atomic multicast and Paxos seems to be a new contribution. Particularly

relevant prior work in this area includes Hellerstein’s work on logic and

lattices for deterministic distributed programming implemented with the

Bloom system [Alvaro, Bailis, et al., 2013; Alvaro, Conway, et al., 2011;

Conway et al., 2012]. The core result is the CALM theorem, which estab-

lishes that logically monotonic programs are guaranteed to be consistent.

The authors shows that any protocol that does not require distributed

synchronization has an asynchronous, monotonic implementation (and

conversely, that distributed synchronization requires blocking for message

exchange). This accords well with our experience coding Derecho, where

the normal mode of the system is asynchronous and monotonic, but epoch

(view) changes require blocking for consensus. Other languages have

made similar observations; in LVars [Kuper and Newton, 2013], Lindsey

Kuper and Ryan Newton also leveraged lattices in building a deterministic-

by-construction programming language with monotonic assignment and

“threshold” reads, which operate in much the same style as our predicates

and triggers in the SST. Christopher Meiklejohn and Peter Van Roy also

leverage this technique in Lasp [Meiklejohn and Van Roy, 2015].

DHTs. Transactional key-value stores have become widely popular in

support of both the NoSQL and SQL database models. Derecho encour-

ages key-value sharding for scalability, and offers strong consistency for

read-only queries that span multiple subgroups or shards. However, at

present Derecho lacks much of the functionality found in full-fledged DHT

solutions, or DHT-based databases such as FaRM [Dragojević et al., 2014],
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HERD [Kalia, Kaminsky, and Andersen, 2014] and Pilaf [Mitchell, Geng,

and Jinyang Li, 2013]. Only some of these DHTs support transactions.

FaRM offers a key-value API, but one in which multiple fields can be up-

dated atomically; if a reader glimpses data while an update is underway, it

reissues the request. DrTM [X. Wei et al., 2015] is similar in design, using

RDMA to build a transactional server. Our feeling is that transactions can

and should be layered over Derecho, but that the atomicity properties

of the core system will be adequate for many purposes and that a full

transactional infrastructure brings overheads that some applications would

not wish to incur.

2.8 conclusions

Derecho is a new software library for creating structured services of the

kind found in today’s cloud-edge. The system offers a simple but powerful

API focused on application structure: application instances running iden-

tical code are automatically mapped to subgroups and shards, possibly

overlapping, in accordance with developer-provided guidance Each sub-

group is backed by a class; interactions between subgroups are made via

RMI invocations, making Derecho subgroups effectively replicated actors.

At the core of Derecho is the SST, a replicated table in which every node

corresponds to an individual row, which may only be written to by that

node. Atop the SST we have built a monotonic language of combinators,

enabling consistent, convergent programming despite the relatively weak

consistency guarantees of this table. This has allowed us to phrase the

core component of Derecho’s strong consistency—virtually-synchronous
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message delivery—entirely monotonically, allowing Derecho to implement

state machine replication at maximum speed.

Derecho can perform updates and read-only queries on disjoint lock-free

data paths, employing either TCP (if RDMA is not available) or RDMA

for all data movement. Derecho is dramatically faster than comparable

packages when running in identical TCP-based configurations, and a

further 4x faster when RDMA hardware is available. The key to this

performance resides in a design that builds the whole system using steady

data flows with minimal locking or delays for round-trip interactions.



3
G A L L I F R E Y

3.1 introduction

In the last chapter we learned about Derecho, a framework for building

distributed programs with replicated objects in a single datacenter. But

modern applications cannot be confined to a single datacenter. The modern

internet landscape is filled with geodistributed programs: single logical

applications split among thousands of machines across the globe. These

programs present the illusion of a single available object—be it a Twitter

feed, a Facebook timeline, or a Gmail inbox—which is implemented as

a constellation of copies, loosely synchronized across perhaps dozens of

data centers. This weakly consistent replication became popular due to its

performance benefits, but at a significant cost: where objects were once

stored on databases offering strong consistency, consistency must now be

recovered through the careful effort of application programmers.

Needless to say, it is hard to correctly synchronize replicated objects in

this setting. And while past work (Sections 3.8, 2.3) has created an excel-

lent foundation, existing solutions lack modularity and compositionality.

Typically, they either fail to provide whole-program guarantees, derive

their guarantees from protocols which are too expensive for the wide area

(as with Derecho), or rigidly constrain what can be replicated and how it

should be replicated (as in the SST core language). Few systems provide

145
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consistency guarantees without forcing the entire program into a single

consistency model, and those that do (as in MixT) also lack whole-program

correctness guarantees.

This chapter presents Gallifrey, a general-purpose language for dis-

tributed programming, whose guiding principles are extensibility, mod-

ularity, and flexible consistency. Gallifrey’s design encourages engi-

neeringextensible and modular software through the principle of orthogonal

replication.1 Under orthogonal replication, the conflict-handling strategy

for a replicated object is separated from the implementation of the object

itself. Nearly any object can be replicated, yet no object must be replicated.

Gallifrey embodies this principle through a novel language mechanism,

restrictions. Restrictions refine the interface of a sequential object and

provide a merge function to resolve concurrent use of allowed methods.

Crucially, objects are not tied to a single restriction: programmers may

implement many restrictions for a given interface, and may use these

restrictions on any object which satisfies this interface. Further, the restric-

tions on an object may change over time.

Gallifrey combines restrictions with a strong type system to ensure

strong consistency and destructive race freedom by default. Gallifrey leverages

the linear, region-based type system presented in chapter 4 to ensure that

at most a single thread has access to any given object at a time. Leverag-

ing the isolation guarantees provided by this system, Gallifrey ensures

that restrictions are respected: that every access to an object guarded by a

restriction is made via a method permitted by that restriction. But this

guarantee is only as good as the restriction it enforces: it is essential that

programmers ensure all permitted operations in a restriction commute, al-

1 The name is inspired by orthogonal persistence [Atkinson and Morrison, 1995].
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lowing programs to safely operate against replicated state asynchronously

without needing to coordinate during normal execution.

But strong consistency without coordination does not constitute a suffi-

ciently powerful programming model. Real applications evolve, moving

through phases in which different operations on data are required. Gal-

lifrey supports these applications through restriction variants, an ADT-like

mechanism that allows the programmer to share an object under one of

several restrictions and use a runtime match statement to determine which

restriction is currently active. Unlike ADTs, restriction variants also sup-

port a transition operation which can change the current active restriction,

allowing the permitted operations on objects to evolve along with the

applications they serve.

We have implemented a prototype of Gallifrey as an extension to the

Java language (vers. 7), backed by the Antidote distributed datastore

[Akkoorath et al., 2016]. Example Gallifrey programs supported by our

prototype can be found in the appendix to this thesis.

We have additionally extended the Gallifrey design far beyond these

core implemented features. Chief among these is the idea of allowing prin-

cipled weakenings of consistency via provisional operations. A restriction

may specify provisional operations that are not required to commute and

are therefore, in general, unsafe to use without coordination. Provisional

operations can be used only from within explicit branches, a new primitive

inspired by distributed version control. Branches represent explicit forking

of state and serve as the basis for threads, transactions, and speculative

execution. Branches and provisional operations combine to allow specu-

lative execution; provisional methods executed within a branch remain

isolated in that branch until it is explicitly merged, either synchronously
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interface Library {

2 int numItems();

bool in_collection(preserves Item i, preserves String col)

bool in_library(preserves Item i)

7

isolated Set[Item] getItems(preserves String col)

void addCollection(consumes String col)

12 void addItem(consumes Item i, preserves String col)

// creates "into" if it does not exist, has no effect if "from" does

not exist

void mergeCollection(preserves String from, preserves

String into)

17 }

Figure 3.1: Library interface. preserves and isolated decorate arguments and
returns which are not stored by the library, while consumes decorates
arguments which are.

or asynchronously. When merged synchronously, branches have the se-

mantics of optimistic transactions, and thus sacrifice no consistency; when

merged asynchronously, branches have a weakly consistent semantics, as

provisional operations contained within a branch may conflict with other

concurrent operations. To compensate for such conflicts, programmers

provide a callback as a contingency to be executed if a conflict does occur.

3.2 a running example

To better understand the difficulties of programming with replicated ob-

jects and how Gallifrey makes this task easier, we introduce a running
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example. Consider a “library” object (Figure 3.1) that maintains a set of

items grouped by collections—for example, a set of books collected under

“Programming Languages” might include Structure and Interpretation of

Computer Programs [Abelson and Sussman, 1996] and Types and Program-

ming Languages [Pierce, 2002]. Alice and Bob use this library object to keep

citations for a paper they are writing together. Like many academics in

the pre-pandemic era, Alice and Bob find themselves frequently traveling

to conferences, working on their bibliography on the go—including in

places with limited internet connectivity. Their bibliography application

must allow them to continue working while disconnected. Now, suppose

Alice adds a book to the collection, How to Design Programs [Felleisen et al.,

2001], while at the same time Bob merges the “Programming Languages”

collection itself into some default collection. To what state of the library

should Alice and Bob’s devices both eventually converge?

There are two strategies for responding to such irreconcilable conflicts.

One is prevention: restrict concurrent execution of operations that might

conflict. For example, Alice and Bob might agree to not remove collections

from the library so that either of them can add books and query the library

safely. The second is restoration: provide a way to safely merge conflicting

operations.2 Alice and Bob can agree on a restorative strategy by allowing

book additions and collection merges, but without allowing users to query

the status of collections at all. This restriction prevents either Alice or

Bob from acting on unstable knowledge of the collection; While Bob may

remove a collection under this restorative strategy, he must do so without

any assurances that the collection in question was even in the library in

2 Indigo [Balegas et al., 2015] makes a similar distinction between conflict avoidance and
conflict resolution.
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the first place. Later, Alice and Bob can achieve consensus on the state of

the library, revealing the fate of its collections.

Now suppose Alice gets on a plane and wants to see what books are

in the library. Without being connected to Bob, Alice can’t be sure that

the list of books she’s seeing contains all the books in the library; after

all, Bob could have added more books while Alice wasn’t looking. Alice

might be fine with this. Perhaps she was only interested in checking if

the library was at least a certain size, or contained at least a certain set

of texts. This she can do safely even without Bob, since Alice and Bob

both agreed not to remove items from the library. But if Alice wishes to

perform some action which may invalidate Bob’s observations, or make

some observation which Bob’s actions could invalidate, she cannot do so

on the plane. Instead, she must wait until she lands, reach consensus with

Bob on the state of the object, and then transition to a new agreement with

Bob under which Alice’s operations will be permitted (i.e. Bob will not

perform any operations with which they may conflict).

Gallifrey’s programming model is designed for this challenging setting.

3.3 restrictions for shared objects

The primary purpose of Gallifrey—safely sharing objects via asynchronous

replication—is enabled by restrictions. Restrictions represent the conflict-

handling strategies for replicated objects. Restrictions are a part of the

type of a replicated object, and Gallifrey uses them at compile time to

ensure that all replicas agree on a conflict-handling strategy. Syntactically,
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restriction AddOnly for Library {

allows addItem;

3 allows as test in_collection;

allows as test in_library;

test sizeAtLeast(int n) { return numItems() >= n; }

}

8 restriction AddWins for Library {

allows addItem;

allows mergeCollection;

allows as test in_library;

test sizeAtLeast(int n) { return numItems() >= n; }

13

merge (addItem(Item i, String ic) l, mergeCollection(

String oc, String nc) r) {

order l < r;

}

}

Figure 3.2: Restrictions for Library interface.

an object declared with type shared[R] T is of class T and is shared under

a restriction R.

Restrictions are defined against a specific interface. For example, Fig-

ure 3.2 shows two possible restrictions for library objects: AddOnly, which

only allows addItem operations and testing if an item is in a collection, and

AddWins, which allows addItem and mergeCollection but cannot check

if an item is in any particular collection. These correspond to the two

conflict-handling strategies in Section 3.2. A restriction consists of the

following parts:

Interface refinements. Restrictions specify exactly which operations of

an interface are allowed under them. Any operation not specified in a

restriction cannot be executed under it, thus allowing for preventative

conflict-handling strategies. For example, in Figure 3.2 AddOnly prohibits
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collection removals. Allowed operations in a restriction must never inter-

fere; doing so results in undefined behavior, and can be statically prevented

by our proposed pre- and postcondition analysis.

Merge functions. Restrictions include merge functions to handle any

conflicts that may arise when two operations execute concurrently, thus al-

lowing for restorative conflict-handling strategies. Merge functions pattern-

match over pairs of operations and their arguments, and then dictate in

which order those operations should appear to have occurred. Merge

functions are only invoked on pairs of operations which are not causally

related; two operations which are causally related will always appear to

occur in their causal order. For example, in Figure 3.2 AddWins contains a

merge function requiring that all collection merges occur after any con-

current additions to those collections. Merge functions are free to observe,

compute on, or modify the arguments to the operations they are ordering.

Monotonic tests. Because updates to replicated objects can be reordered,

reads of the object’s state before convergence can vary across replicas.

Thus, reading a replicated object’s state directly is usually eschewed:

instead, a special class of reads, found in programming models such as

LVars (threshold reads) and Lasp (monotonic reads), is defined [Kuper and

Newton, 2013; Meiklejohn and Van Roy, 2015]. Restrictions provide a

similar functionality with monotonic tests: boolean expressions whose value

is guaranteed to remain true once it becomes true, no matter what further

operations are received by the replica. With this property, monotonic tests

can be used for triggers, code whose execution is blocked until a monotonic

test becomes true. These monotonic tests and triggers are closely related

to the predicates and triggers found in Derecho’s SST core language.

For example, in Figure 3.2 the AddWins and AddOnly restrictions allow
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τ <: shared[R] τ

shared-replicates

Γ;H ` e : ` shared[R] τ a Γ′;H′

Γ;H ` e : `′ shared[R] τ a Γ′;H′, `′〈 〉

Figure 3.3: Extension to chapter 4’s isolation typing for shared objects.

programmers to invoke the in_library method as a test. Both also feature

sizeAtLeast, a test constructed directly in the restriction which internally

uses the otherwise-not-permitted numItems method to test whether the

number of items in the library has passed some threshold. If Alice (from

Section 3.2) is worried that the library is getting too big, then this test can

be used to inform her that the library is bigger than some threshold size.

3.3.1 Safety Guarantees via Isolation Typing

Importantly, restrictions offer the following type-safety guarantee:

• No object can perform an operation forbidden by the restriction

under which it is shared.

Correct restrictions—those which do not permit conflicting operations—

must also ensure the following property:

• Monotonic tests cannot be invalidated: once their value is true, their

value will always be true afterward until replicas explicitly coordinate.

Taken together, these properties provide a strong safety result: a program

with correct restrictions always enjoys strong consistency.

Gallifrey derives its type-safety guarantee from its use of isolation

typing as presented in chapter 4. Chapter 4 introduces a static type system
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which ensures that a reference is isolated: that any objects reachable from

a reference may only be reached via that reference. By treating shared

references as isolated, this system in turn ensures that each shared object

is only accessible via its correctly-restricted interface. Chapter 4’s system

is organized around the idea of regions; all objects belong to some region,

and the type system statically tracks the region to which all objects belong

(labeled `) and how the objects in different regions relate.

There are only two Gallifrey-specific extensions to chapter 4’s system

required to implement shared objects. The first is to introduce shared

references as an explicit type, and treat them as a supertype of unshared

references. The second is to declare that a shared reference can live in any

region; this reflects the fact that these shared references are always allowed

to cross regions. These rules are reflected in figure 3.3.

Gallifrey also requires that restrictions do not expose methods which

conflict; but care must be taken in determining conflicting methods.

Consider for example a restriction which allows a single method

void m(preserves Box<T> t). Despite the fact that this method has no

return result, it is still possible that this method could self-conflict if it mu-

tates its argument t. This method could be implemented as a combination

setter/getter with t as its input and output parameter:

class Container<T> {
T t;
void m(preserves Box<T> t){
T tmp = this.t;
this.t = t.get().clone();
t.set(tmp.clone());

}
}

Calling m here reveals the exact value of a field which may be mutated by

concurrent calls to m. We have effectively implemented a read-write register;
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using these with observationally strong consistency requires linearizability,

which cannot be implemented during disconnection—and restrictions

must function during disconnection. It is therefore never safe to allow m in

a restriction.

3.4 transitioning restrictions with restriction variants

One might find shared object restrictions too restrictive: single restrictions

are essentially static contracts, and ban certain operations for so long as

they are in force. Prior work [Magrino et al., 2019; Roy et al., 2015; Whit-

taker and Hellerstein, 2018] has shown that loosely synchronized replicas

can eschew coordination for most operations, and then coordinate only to

safely change established invariants. Chapter 2 contains a concrete exam-

ple of this: the SST from Derecho. Using the SST, programmers can mutate

shared monotonic datatypes, much as Gallifrey allows programmers to

share arbitrary objects under monotonic restrictions. But Derecho also

needs to violate monotonicity in order to handle a view change, triggered

by node failure or group reconfiguration. During view change, Derecho

achieves consensus on the exact values in the SST, transitioning to a new

set of monotonic datastructures active in the new view.

Taking a cue from this work, we propose two additional features for

restrictions. The first is reclamation: a thread may attempt to reclaim a

shared object as a local object, removing its restriction and eliminating its

ability to be replicated. This parallels the activation of a leader in Derecho’s

view-change protocols. This operation is only possible if no other replicas
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of this object exist; the system must reach consensus on this fact before a

reclamation can proceed.

More usefully, we also introduce a mechanism to transition shared objects

across restrictions. The strict separation of object implementations and

conflict resolution strategies allows programs to dynamically transition

between restrictions, changing the conflict-handling strategy of shared

objects over time. At the point of transition, all replicas reach consensus on

the true value of an object, allowing a new restriction to be safely applied.

One can view Derecho’s view-change protocol as a special case of this

transition operation, reaching consensus on and changing the exposed

rows of the SST.

3.4.1 Restriction Variants

To enable transitions we first introduce a new kind of restriction: restriction

variants. A restriction variant allows programmers to share an object under

one of several possible concrete restrictions. An example specification of

a restriction variant is found in Figure 3.4 on line 5; here we see that

restriction variants are specified syntactically as a name given to a list of

concrete restrictions separated by vertical bars.

Restriction variants work much like sealed classes from Kotlin. As with

a sealed class, the variant acts as an “abstract” restriction, allowing none of

the restricted class’s operations. But because we statically know all possible

“concrete” restrictions a variant-restricted object may have at runtime, we

can explicitly match on a variant-restricted object to discover which con-

crete restriction is active on that object. In the arms of this match we receive
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restriction ReadOnly for Library {
2 allows getItems;
}

restriction Threshold = AddWins | ReadOnly

7 class LibraryClient {
shared[Threshold] Library library;
shared[Messaging] User user;

public LibraryClient(shared[Threshold] Library lib,
12 shared[Messaging] User u) {

library = lib;
user = u;
match_restriction library with
| shared[Threshold::AddWins] Library awlib {

17 changeRestriction(awlib); }
| shared[Threshold::ReadOnly] Library rolib { } }

void addItem(consumes Item item, consumes String collection) {
match_restriction library with

22 | shared[Threshold::AddWins] Library awlib {
awlib.addItem(item, collection); }

| shared[Threshold::ReadOnly] Library rolib {
throw ClientException("Library is read only!"); } }

27 void mergeCollection(preserves String from, preserves String
into) {

match_restriction library with
| shared[Threshold::AddWins] Library awlib {
awlib.mergeCollection(from, into); }

| shared[Threshold::ReadOnly] Library rolib {
32 throw ClientException("Library is read only!"); } }

isolated Set[Item] getItems(preserves String collection) {
match_restriction library with
| shared[Threshold::AddWins] Library awlib {

37 throw ClientException("Library must be read only!"); }
| shared[Threshold::ReadOnly] Library rolib {
return rolib.getItems(collection); } }

void changeRestriction(shared[Threshold::AddWins] Library awlib)
{...} }

Figure 3.4: Client that uses a shared library object.
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a more precise reference allowing all operations permitted by the active

concrete restriction. The reference we receive in this arm is not, however,

a normal concrete-shared reference, but one specialized to the restriction

variant on which we matched. An example of such a match can be found

in Figure 3.4 on line 21; here, we match on a library shared under a vari-

ant permitting both AddWins and ReadOnly concrete restrictions, with one

arm for each concrete restriction. In the first branch, the reference awlib

is bound to a shared[Threshold::AddWins] variant of library. In the

second, the reference rolib is bound to a shared[Threshold::ReadOnly]

variant of library.

The semantics of holding a shared reference for a specific arm of a

restriction variant (e.g. a shared[Threshold:AddWins] reference) are quite

different from those of sealed classes due to our desire to support tran-

sitions. The goal of transitioning is to change the concrete restriction of

an existing variant-shared object at runtime. But a new concrete restric-

tion may allow new operations on the shared object, which may conflict

with those allowed under existing specific variant references. So long as a

specific shared[Threshold:AddWins] reference is valid somewhere in the

system, it would be incorrect to allow any operations which could con-

flict with AddWins—effectively locking the object to the AddWins concrete

restriction. To prevent objects from being permanently locked to a specific

concrete restriction, we limit the lifetime of variant-provided concrete

restrictions to the duration of the match statements which produce them.

These specific variant restrictions are implicitly nulled when the match ends,

preventing programmers from relying on them past the end of the match.

This is also why we have chosen to syntactically link these references to

their original variant restriction; by creating a different syntactic class for
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these more-ephemeral restrictions, we allow the programmer to only worry

about implicit nullability on references which will actually experience it.

This reliance on implicit null may be a cause for concern—after all, one

of our goals in chapter 4 is to avoid any use of implicit null. We rely on

it here to increase the expressive power of shared references. We want to

allow programmers to send variant-shared objects stored under a concrete

restriction to other threads or processes, without relying on structured

parallelism to ensure these objects have limited lifetimes. Determining a

usable static mechanism which achieve this without introducing significant

programmer-facing complexity is an exciting avenue for future work.

3.4.2 Transitioning Restrictions

We now present the details of transition. The primitive operation

transition() creates a request to transition an object shared under a

restriction variant to one of its constituent restrictions. After any replica

requests a transition, Gallifrey’s runtime attempts to reach consensus on

both the value of the object and the new requested transition at all replicas,

waiting until any relevant match statements have terminated and blocking

any future match statements until consensus can be achieved or a timeout

occurs. If a timeout occurs, the transition does not take effect, leaving the

object under its current restriction. Even if a transition does occur, there is

every possibility that another transition may occur immediately afterwards,

taking the object to an unexpected concrete restriction. For this reason,

programmers can never assume that a transition has succeeded, but rather

must match on the object to determine its current active restriction.
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void changeRestriction(shared[AddWins] Library awlib){

thread (awlib, user) {

when (awlib.sizeAtLeast(100)) {

4 user.sendMessage("Library is too big!");
transition(awlib, ReadOnly);

}

}

}

Figure 3.5: Using a trigger to transition restrictions.

For an example of transitions between restrictions, consider Figure 3.5.

The LibraryClient constructor calls changeRestriction, which creates

a thread with a new replica of the library object that adds a trigger to

transition its library object to ReadOnly when the library reaches a certain

size using the sizeAtLeast test defined in AddWins. The addItem and

mergeCollection methods match on the current restriction of the library

to ensure it is AddWins; otherwise the methods throw an exception. The

getItems method does something similar for the ReadOnly restriction.

3.5 the gallifrey implementation

We have implemented a Gallifrey prototype as an extension of Java 1.7

using the Polyglot extensible compiler framework [Nystrom, Clarkson,

and A. C. Myers, 2003], backed by the distributed object store Antidote

[Akkoorath et al., 2016]. Our prototype does not realize the full promise

of the Gallifrey programming model; it does not incorporate the type

system proposed in chapter 4 (opting for a simpler unique-pointer model

similar to that of C++), and all features described in the following “Design”
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sections have not been implemented. Nonetheless, it provides an excellent

research platform via which to experiment with Gallifrey.

3.5.1 The System: Using Antidote for shared Objects

The architecture of Gallifrey’s object sharing distributed system is rea-

sonably straightforward. The Gallifrey compiler frontend translates the

implicit creation of shared objects to the explicit creation of an object stored

in the Antidote distributed system [Akkoorath et al., 2016]. Antidote pro-

vides the abstraction of an object store offering causal consistency. Each

object within Antidote is an instance of some Convergent Replicated Data

Type (CRDT) [Shapiro, 2017] conforming to Antidote’s published CRDT

interface. While Antidote is extensible and allows user-provided CRDTs, it

cannot change the set of CRDT types available at runtime; adding a new

type of CRDT requires a restart of the Antidote system. To compensate

for this, we choose to associate all shared objects in Gallifrey with a single

Antidote CRDT type representing a serialized Java object “snapshot” and a

partially-ordered log of operations to apply to this object. When a Gallifrey

object is initially shared, a snapshot of that object is taken and a new,

empty operation log is created for the object. This pair of snapshot and

log is then sent to Antidote. Subsequent mutations to the object are not

applied directly to the snapshot, but rather stored in the object’s operation

log.

Within Antidote, each replica of an object is managed by a private Java

“backend” process. This process manages the log of operations pending for

each shared object, applying those operations to the snapshot as frequently
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as possible, creating a new snapshot and removing the applied operations

from the operation log. In order to maintain consistency, it is imperative

that all operations appear to occur in the same order at all replicas. This in

turn means the backend must totally order pending operations, and cannot

flush an operation until all its predecessors have arrived. Determining

a total order is complicated by the realities of causal replication; if two

disconnected replicas each receive an operation, they cannot immediately

flush it to their snapshot as each replica knows that there may exist some

other operation which should be serialized before the operation they have

received.

We solve the ordering problem by combining vector clocks with user-

provided merge functions. Antidote itself maintains a single global vector

clock shared by all CRDTs under its care; we leverage this mechanism

to provide a vector clock timestamp to both snapshots and operations.

Antidote also provides a notion of a “global minimum time”: an artificial

vector clock value guaranteed to be causally before (or the same as) the

local time at every replica. As Antidote guarantees causal replication, it is

impossible for a replica to learn of a new global minimum time before that

replica has received all operations which occurred before that new global

minimum time. This global minimum time in turn allows the definition

of a “global minimum prefix” of an operation log: the set of operations

which occur before the global minimum time. Causality ensures that the

global minimum prefix is complete: there are no “missing” operations

which may occur between any two events in this prefix.

The global minimum prefix still requires a total order. This total or-

der is generated from the user-provided merge functions. Whenever two

operations are unordered in the global minimum prefix, their order is
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determined by their object’s restriction’s merge function when available,

or lexical ordering on vector clocks when a merge is unavailable. Com-

bining merge functions, lexical ordering, and causal ordering in this way

generates a total order; this is the order in which operations in the global

minimum prefix are applied to the snapshot.

Only one puzzle remains: how to communicate observations of shared

objects back to the observer. To assist with this, we require that methods

allowed in restrictions (for this prototype) are divided up into a set of

“commands” and a set of “queries.” Commands are mutations which

can neither return a result nor mutate their arguments; Queries may

return results and mutate arguments but may not mutate their receiver.

Commands are appended to the shared object’s operations log: they are

represented as a serialized method name and arguments, and are managed

by Antidote. Queries are less straightforward, as they must reflect the

results of any pending commands in the operation log. To handle these,

our prototype creates a temporary copy of the Antidote-managed snapshot

and log, applies all the operations in the log to this temporary copy, and

return the result of the query on this fast-forwarded copy.

3.5.2 Transitions and Consensus

While Antidote is able to manage the CRDT-like aspects of Gallifrey’s

shared objects, it is not a good platform match for its synchronous tran-

sition mechanism. To implement matching and transitions for restriction

variants, we introduce a new centralized service which manages the cur-

rent concrete restriction for all objects shared under a restriction variant.



164 gallifrey

On a match statement, a Gallifrey client must contact this central service

to determine which current restriction is active on their variant-shared

object.3 For the duration of the match, the client holds a read lock on

this concrete restriction; all transition requests will be blocked (or rejected

via timeout) while any client is currently in a match arm. This ensures

that concrete-restriction-tagged shared references will remain valid for the

duration of each match.

Transition requests are also processed via this central service. To request

a transition, the client first contacts the central service to determine if any

concrete restrictions are active for the transitioning object. If not, it then

acquires a write lock on the concrete restriction for this object, blocking

any other clients from entering match statements. The central service in

turn contacts all replicas of the object, flushing pending operations and

waiting for all in-flight operations to be received at every replica. Once

all replicas have converged, the central service allows the transition to

proceed, setting the current concrete restriction accordingly. At this point

all locks are released, and clients are free to enter matches once again.

3.5.3 The Compiler: Extending Java 1.7 to Handle Gallifrey

The Gallifrey compiler is implemented in a Polyglot extension to Java

1.7, extended to handle restrictions, restriction variants, merge functions,

and tests. In all cases, the objects and interfaces described here guard an

instance of a generic SharedObject type, which supports a reflection-like

3 Other solutions, such as allowing clients to take out leases on their concrete restrictions,
may yield improved performance; the ultimate design of this component is heavily
influenced by the deployment domain of Gallifrey and as such is best specified as a
pluggable component.
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API for invoking methods and handles all replication and communication

activities via the mechanisms described in the previous subsections.

Restrictions Our translation treats restrictions as extra interfaces imple-

mented by an object. When compiling a class, the project is searched for all

restrictions that mention this class. The compiler then generates interfaces

corresponding to these restrictions, containing the methods that the re-

striction allows. The compiler then adjusts the restricted class to explicitly

implement all of its restrictions. During typechecking, a shared[R] T is

not treated as a direct supertype of T; programmers must explicitly call

a special move function to transform an instance of T into an instance of

shared[R] T. We then can use this explicit codepoint to insert the rele-

vant Antidote operations. While this move call can be entirely inferred in

principle, it is not inferred by the current compiler.

Restriction Variants. Our translation for restriction variants is necessar-

ily quite a bit different from our translation for plain concrete restrictions

due to Restriction Variants’ ability to transition. First, the compiler must

synthesize separate variant-specific restriction interfaces corresponding

to each arm of this variant. These interfaces all extend a marker holder

interface for this variant, and are otherwise identical to those of the match-

ing concrete restriction. The Restriction Variant itself is represented as a

concrete class with a single method transition(Class<?>) and a single

field holding the current active concrete restriction. Unlike with plain

restrictions, however, the interfaces corresponding to arms of a restriction

variant are not extended by the concrete class they restrict; rather, they are

implemented by a concrete class which extends the restriction variant class

and wraps the corresponding concrete restriction, forwarding its methods.

This encoding correctly ensures that a shared reference restricted via an
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arm of a restriction variant cannot be confused with one restricted by a

concrete restriction, even if both references are based on the same concrete

restriction.

Match Statements. The difficulty in translating match statements does

not lie in the actual pattern match itself — that is easily handled by trans-

lating the match cases to a chain of if statements, which rely on Java’s

instanceof operator to determine if the holder field of the restriction

variant in question contains a concrete restriction of the target type. Rather,

the difficulty is in ensuring that no transition can occur while those

references are active, and that the references exposed via the match are

correctly nulled out at the end of this match. The former is accomplished

through the read-lock logic discussed in the previous subsection. To ac-

complish the latter, the runtime creates a shallow copy of the restriction

variant object for each match branch, allowing the holder field to alias

that of the original variant object’s holder field. Consider for example the

following code:

shared[Foo] Baz obj = ...;
match_restriction obj with
| shared[Foo::Bar] Baz bobj {bobj.bop(); }

This code roughly translates as follows:

Foo obj = ...;
final Foo_Bar bobj;
try {
obj.read_lock();
if (obj.holder() instanceof Bar){
bobj = new Foo_Bar_impl(obj.holder());
bobj.bop();

}
} finally {
bobj.clear_holder();
obj.read_unlock();

}
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For this fragment, the compiler generates a final object to store the

reference for the match arm, ensuring that errant programmer assignments

cannot invalidate the nulling-out logic. In a try block, the code first acquires

the read lock on the matching object (blocking transitions), and then

determines if the wrapped concrete restriction is an instance of the desired

concrete restriction. If it is, it is unwrapped into a new object corresponding

to the matching arm of the restriction variant. Finally, a finally block

clears the holder field of the match-limited object, ensuring subsequent

uses of it receive NullPointerExceptions, and the lock is released.

Tests. Our test translation requires two things: first, that a programmer

may not call a test method outside of a when block, and second, that pro-

grammers may add test methods at the level of restrictions. To accomplish

this, our compiler migrates test methods back to the restricted class, and

mangles their names to include the restriction from which they came.

It then translates method calls within when blocks via the same name-

mangling logic. When blocks themselves are translated as a while loop on

the condition, blocking until it becomes true, followed by the body.

3.6 design : the promise of pre- and post-conditions

Writing correct programmer-provided restrictions can indeed be difficult.

It is possible to eliminate much of this difficulty and enforce that restrictions

are correct by requiring users provide preconditions and postconditions,

and analyzing these for conflicts.

Through the Java Markup Language (JML) [Badros, 2000], the Java

ecosystem has long provided support for annotating methods with pre-
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and post-conditions. These are written as logical formulas over unin-

terpreted functions, and appear in Java annotations in comments above

method declarations. In its modern incarnation as OpenJML [Cok, 2011],

this software has matured into an SMT-based verification solution for all

of Java 1.8. This verification attempts to establish functional correctness:

whether the implementation of a Java method matches the specification

provided in the comments. We need it to do more: to determine not just

that all methods of an interface are implemented correctly, but to deter-

mine which methods in an interface may be safely called concurrently or

during disconnection.

To accomplish this, we take inspiration from Indigo [Balegas et al.,

2015] and allow our JML annotations to include abstract predicates and

specifically-marked read operations defined in the interface. Abstract

predicates do not have a concrete definition; they are asserted directly in

pre- or postconditions in order to describe the assumptions and effects

of an operation over an object’s state. Including read operations in the

language of postconditions allows us to connect these postconditions with

the state of the object, describing how subsequent reads will be affected by

an operation. These annotations allow the detection of conflicts that arise

from concurrent operations—for example, when the postcondition of one

operation violates the precondition of another, or when two operations

have conflicting postconditions. Thus the type checker can determine

whether any mutation threatens to invalidate a test or observation, and

only permit restrictions which do not contain such conflicting operations.

Like Indigo and OpenJML, we use an SMT solver to verify that the pre- and

postcondition annotations on operations are consistent with our desired

safety guarantees [Balegas et al., 2015].
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interface Library {

2 int numItems();

isolated Set[Item] getItems(preserves String col)

requires collection(col);

7 void addCollection(consumes String col)

ensures collection(col);

void addItem(consumes Item i, consumes String col)

requires collection(col)

12 ensures next(numItems()) >= numItems();

// also moves items in col to a default collection

void removeCollection(preserves String col)

ensures !collection(col) && (next(numItems()) == numItems

());

17 }

Figure 3.6: Simplified and annotated Library interface. requires and ensures
refer to pre- and postconditions respectively. collection is an abstract
predicate indicating the presence of a collection in the library.
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Consider the simplified annotated Library interface in Figure 3.6. Here,

addItem adds an item to an existing collection if it is not already in the

collection, so its postcondition says that the return value of numItems after

invocation of addItem (i.e. next(numItems())) is at least the return value

of numItems before invocation—the number of items in the library remains

the same or it increases by one. Meanwhile, removeCollection removes a

collection from the library without removing the items in it from the library,

instead moving orphaned items (those not in any other collection) to a

default collection. Since the postcondition of removeCollection violates

the precondition of addItem when their arguments reference the same

collection, the concurrent operations conflict. Note that all operations have

postconditions that do not decrease the value of numItems(), allowing us to

verify that numItems() is monotonic with respect to all library mutations.

3.7 design : weakening consistency with provisional opera-

tions

In this and subsequent sections we discuss aspects of the Gallifrey lan-

guage that we have designed, but have not substantially evaluated or

implemented. Nevertheless, we consider these ideas to be a key contribu-

tion of the Gallifrey effort.

3.7.1 Provisionality via Branches and Contingencies

Section 3.3 discussed Gallifrey’s use of restrictions to guarantee strong

consistency and whole-program convergence. But these guarantees re-
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quired restrictions in which no operations conflicted, with only the highly-

synchronous transition method available to build objects for which

calling conflicting operations is desired. These limitations are impractical

for many common programs; sometimes programs may need to read and

write a shared object, without stopping for consensus between operations.

Recall that in section 3.2 Alice and Bob are collaborating to maintain a

library. Let us imagine a scenario in which Alice gets on a plane and wants

to check if a certain book is already present in the library, adding it to

some collection if it is not. Under the mechanisms we have presented so far,

this is impossible: adding books to the library is permitted but removing

them is not, so the library monotonically grows. Under this setting one

may safely condition on action on the presence of a book in the library, as

this is guaranteed to be maintained; but Alice wants to condition an action

on the absence of a book from the library. This cannot be done soundly; a

book Alice observes to be absent may have been added to by Bob while

Alice was taking off.

To allow this, Gallifrey permits restriction to provisionally allow methods.

Provisional methods leave open the possibility of conflicts; in exchange,

there are no limitations on what a provisional method can do. These

methods are executed optimistically, allowing users to continue operating

against replicated state without stopping for consensus. Because provi-

sional methods can conflict, their effects (and any program statements

which depend on them) are not guaranteed to be consistent; because of

that, any provisional method allowed in a restriction must be contingent

on the absence of a conflict, and must be associated with a contingency

callback to be invoked if a conflict does occur.
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class ItemsStale {...}

3 restriction AddAndCheck for Library {

allows addItem;

allows as test in_collection;

allows as test in_library;

test sizeAtLeast(int n) { return numItems() >= n; }

8 allows getItems contingent ItemsStale

merge(addItem(Item i, String col) l,

getItems() r -> Set[Item] s){

if (!s.contains(i)){

13 reject r with ItemsStale();

} else order l < r

}

}

Figure 3.7: A restriction with a provisional method.

In figure 3.7, we see a restriction AddAndCheck which extends the pre-

vious AddOnly restriction with the provisional operation getItems. The

keyword contingent serves to both mark this operation as provisional

and name ItemsStale as the type that will be used to communicate with

required contingency callbacks. Under this restriction, calls directly to

getItems will be allowed—even though the value returned by getItems is

not guaranteed to be consistent.

But one cannot simply execute potentially conflicting actions without

acknowledging the significant inconsistency invited by doing so. To par-

tially recover from this, Gallifrey pairs every provisional method with a

contingency: a named callback intended to recover from—or at least apolo-

gize for—any consistency error resulting from using a provisional method.

Contingencies are invoked directly from the merge function for the asso-

ciated restriction, as seen in figure 3.7, and so can receive any necessary
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void addIfAbsent(shared[AddAndCheck] Library aclib,

consumes Item book,

preserves String collection){

4 Branch tok = branch(aclib, collection) {

if (!aclib.getItems().contains(book))

aclib.addItem(book,collection);

};

tok.pull(ItemsStale is => {

9 user.sendMsg("Read was stale: " + is.observed);

}, Success succ => {

user.sendMsg("Valid read of" + succ.observed);

});

}

Figure 3.8: Using branches for a provisional operation with contingency.

information from the merge. To handle this, we extend the capabilities of

the merge function, allowing it to explicitly reject an operation whose

consistency cannot be rescued via re-ordering.

As a simple example of the use of these features, consider the function

defined in Figure 3.8. Here, we’ve implemented our extended example

in which Alice tries to add a book to the library based on its provisional

absence from another collection. This leaves open the possibility that a

merge function would reject this operation. To compensate, Alice registers

a contingency callback, which sends an error message indicating the

observation failed to include something (Figure 3.8, line 9).

3.7.2 Branches

Using provisional methods and contingencies raises important semantic

questions. After the invocation of a provisional method on a shared object,

are all subsequent uses of this object also provisional? If a provisional
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observation from an object flows to other values in the program, should

those values also be considered provisional? What if that flow reaches

different, unrelated shared objects? And precisely where is the right place

to register a contingency callback—close to the provisional invocation, or

close to the eventual visible use of its result?

In Gallifrey, the key to answering all these questions is a new mechanism

called branches. Branches exist to contain provisionality; like their namesake

in the world of version control, every branch possesses its own fork of state,

isolated from external mutations until it is merged back into its parent.

Programmers may enter and exit (“check out”) in-progress branches,

spawn sub-branches, and freely choose to discard or merge branches.

When a provisional operation occurs within a branch, then the entire

branch is considered provisional; any code that executes after a provisional

operation may be tainted by that provisional operation, and so inherits all

of its potential for conflict. Helpfully, branches also allow deferring the

point at which contingencies are required. Because branches are strongly

isolated from the remainder of the system, any potential conflicts are

safely contained within the branch; the only point at which these conflicts

become visible is when the branch attempts to merge with the outside

world. At this point we require that programmers supply contingencies.

Syntactically, branches are created by the syntax branch(args...){body},

as in Figure 3.8. The args... is a list of objects that the branch consumes

(as in the function argument decorator) and now owns, and which are

available within the branch’s body. When a shared reference first passes

into a branch, a new replica is made for the branch. The branch’s body is

executed immediately, after which control proceeds with the statement

immediately following the branch. The branch construct also returns a
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token via which programmers can interact with the branch. This token is

linear; it cannot be aliased, and it must be either merged or aborted before

it goes out of scope.

A typical use of the branch’s token, as seen in Figure 3.8 on line 8,

is to optimistically merge the branch into the calling context via pull.

This construct immediately merges everything in the branch with pull’s

calling context, leaving open the potential for conflict with other, as-yet-

unmerged branches. Because of this potential for future conflict, users must

provide a set of contingency callbacks covering all provisional behavior

that occurred on this branch. These callbacks are intended as a means to

repair any damage done in the case of a consistency violation caused by

any conflict.

To avoid the possibility of conflict, Gallifrey’s branches also support

a synchronous commit operation. Like transition, commit blocks until a

consensus can be reached among replicas, determining which provisional

operations are consistent with global state, and which, having been found

in conflict with already accepted operations, should be rejected by the

system. After commit, all effects from within the branch become visible

to the wider system; operations rejected due to conflict are re-executed

against consistent state, with the new results replacing the old. With

commit, branches have the semantics of strictly serializable transactions.

Branches operate on an isolated snapshot of state, apply the effect of all

their operations, verify that their snapshot remains consistent with the

system at large, and re-execute their operations if not.

The branch token can be used for more advanced features as well. With

token.abort(), programmers can explicitly abandon the branch. With

token.peek, programmers can steal a reference to the branch’s state without
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void atm_withdraw(shared[All] Account acct, unique Integer

amnt) {

2 Branch tok = branch(acct,amnt){

Integer withdrawn_amnt = acct.withdraw(amnt);

Double percent = withdrawn_amnt / acct.balance();

};

if (tok.peek[percent] <= 0.25){

7 tok.pull(Overdraft amnt => { charge_overdraft(acct) },

UpdatedBalance => {/* ignore */});

} else tok.commit();

}

Figure 3.9: More advanced features of branches.

first merging the branch, and without needing to supply contingencies so

long as the result of peek does not influence any visible actions outside

the branch.

These features are illustrated in Figure 3.9. This figure introduces the

example of withdrawing from an ATM. The method takes a shared bank ac-

count which supports provisional withdraw() and provisional balance(),

with contingencies Overdraft and UpdatedBalance respectively. The with-

drawal is allowed to proceed provisionally if the chance for overdraft is low;

if the chance of overdraft is high then it instead chooses to synchronously

commit the withdrawal.

3.7.3 Information Flow in Branches

The peek operation introduces the ability to have differently-consistent

values interacting within the same program context. To ensure the re-

sulting mixed consistency cannot lead to violations of strongly-consistent

guarantees, we turn once again to MixT’s type system from chapter 1.
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Gallifrey tracks provisionality using an adaptation of MixT’s information

flow type system.

In an information flow type system, values are associated with labels

drawn from a lattice. Unlike in MixT, Gallifrey does not reason directly

about consistency, choosing instead to reason about specific consistency

violations visible through provisional methods. Thus Gallifrey’s lattice

does not contain consistency models; instead, it contains elements that

are sets of provisional methods, ordered by subset inclusion. Each value

is labeled with the set of provisional methods which have influenced it.

Values labeled with the empty set (indicating they have not been influ-

enced by provisional behavior) live at the bottom of the lattice (⊥), while

values which have been influenced by all possible provisional behavior

live at the top (>). To prevent computation from depending on provisional

observations, information should be influenced only by information whose

label is a subset of that of the influenced information, just like in MixT.

Recall that information flow handles both direct influence, like assignment,

and indirect influence, like control flow.

Every reference and variable in Gallifrey—including shared references

and even branch tokens—is associated with one of these provisional labels.

Most references and variables will have the ⊥ label, indicating an absence

of provisional behavior. Branch tokens are somewhat special; branches

contain computation, and so their labels indicate the set of provisional

methods that have been called within them. Similarly, in order to call a

provisional method on a shared reference it must be possible to type that

reference with an appropriate provisional label—which in turn means it

must reside within a branch that can be typed with the appropriate label.
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Provisional labels define precisely where the effects of provisional behav-

ior may be visible, enabling the safe use of peek. With token.peek[ref],

users can read a value from a branch and use this value outside of the

branch’s scope. This value’s label contains the provisional operations from

the branch which have influenced it. For example, a user can use a peeked

value to decide whether its branch should be synchronously commited or

asynchronously pulled (Figure 3.9 line 6).

Our information-flow types also delay the point at which contingency

callbacks for peeked values must be supplied. This is because contingencies

are only necessary when provisional operations have influenced some

visible action; in Gallifrey, visible actions can only be influenced by values

with the empty provisional label (⊥). Thus our information-flow type

system will prevent a peeked value from influencing a visible action

unless the peeked value is endorsed, an operation which downgrades its

label so that it can be used in contexts that do not allow influence from

provisional operations. It is at this point of endorsement that the user

must provide contingency callbacks. For example, a user might peek a

value from a branch, transform it, and print the result; it is at the point of

printing the result that the user must endorse the peek, making it easy to

supply callbacks which apologize for the observed effect of the peek—the

printed value.

3.8 related work

Handling conflicts in concurrent operations. A recent trend is to treat

conflict handling strategies as part of a shared object’s implementation,
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as seen in the literature on conflict-free replicated data types [Shapiro,

2017] (CRDTs) and as seen in programming models such as Bloom [Al-

varo, Bailis, et al., 2013], Cloud Types [Burckhardt, Fähndrich, et al., 2012],

Lasp [Meiklejohn and Van Roy, 2015], and others [Houshmand and Lesani,

2019; Kuper and Newton, 2013; Sivaramakrishnan, Kaki, and Jagannathan,

2015]. Earlier systems—like Bayou [D. B. Terry, Theimer, et al., 1995],

Dynamo [DeCandia et al., 2007], and others [Crooks et al., 2016; Schönig,

2015]—often specify conflict handling separately from an object’s im-

plementation. But these systems do not ensure that conflict handling is

sensible: they leave the job of merging inconsistent state entirely to the user,

inviting errors by allowing partial, incorrect, or even inconsistent merge

functions. In Gallifrey, restrictions are defined separately from interfaces,

and can be defined without access to implementation internals. However,

Gallifrey aims to provide stronger guarantees that existing systems which

specify conflict-handling separately from implementation by making re-

strictions part of a shared object’s type, allowing unsafe use of the shared

object to be rejected at compile time (i.e. when prohibited operations are

used, when a merge function is not exhaustive, when the monotonicity of

a test can be violated by an allowed operation).

Speculative operations. To provide higher availability in a georeplicated

setting, some systems expose speculative operations in their programming

model. Correctables [Guerraoui, Pavlovic, and Seredinschi, 2016] provides

a mechanism to speculate on preliminary values returned by weakly

consistent operations. If the final values returned by strongly consistent

operations do not match the preliminary values, then Correctables allows

programmers to recompute or discard the effects of the initial speculation.

PLANET [Pang et al., 2014] provides callbacks that fire depending on
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what stage a transaction is in before a specified timeout, also allowing

users to specify a stage when it speculatively commits (i.e., will commit

“if all goes well”, with some explicit probability that all will go well). It

also provides callbacks that fire when the final status of the transaction is

known, allowing users to execute apologies [Helland and Campbell, 2009]

when it was speculated to have committed but was ultimately aborted.

In a different setting, Concurrent Revisions [Burckhardt, Baldassin, and

Leijen, 2010] provides an intuitive programming model for parallel pro-

grams by allowing “revisions” to fork off the state of objects and then to

join revisions back into their parents by merge functions specified using

revision types. Gallifrey takes a similar approach, allowing programmers

to speculate at the language level within explicit branches (Section 3.7.2)

that fork off the state of shared objects. Branches can be used without

coordination among replicas, in which case Gallifrey requires our own

notion of apologies via contingency callbacks; with coordination, branches

enjoy strong consistency—no apologies needed.

Coordination avoidance. Work on coordination avoidance in distributed

databases has shown that nodes need to coordinate only when they would

otherwise execute operations which violate specified invariants [Bailis,

Fekete, et al., 2014; Balegas et al., 2015; Magrino et al., 2019; Preguiça

et al., 2003; Roy et al., 2015; Whittaker and Hellerstein, 2018]. Gallifrey’s

restrictions (Section 3.3) embody this principle by refining the interface of

a shared object such that only specific operations are available at every

replica. Restrictions are a type-safe mechanism for coordination avoidance,

rejecting programs that violate invariants at compile time. In particu-

lar, Indigo presents a framework for users to develop replicated objects

which allow commutative operations [Balegas et al., 2015]. Indigo allows
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the programmer to specify pre- and postconditions, used to statically

determine which pairs of operations may conflict. When operations are

determined to conflict, Indigo’s compiler inserts appropriate code to use

reservations [Preguiça et al., 2003] in a way that is analogous to Gallifrey’s

restrictions. We similarly use pre- and postcondition annotations to de-

termine when operations conflict in checking for the exhaustiveness of

merge functions. Additionally, we use these annotations to check that the

monotonicity of tests are not violated by allowed operations in the restric-

tion. Unlike Gallifrey Indigo does not support orthogonal replication; its

analysis is performed on the object interface, while ours is performed on

the restrictions.

3.9 future work

We now give a high-level description of open questions, potential chal-

lenges, and possible solutions left as challenge problems.

3.9.1 Extensions to the Language Design

Bootstrapping. Our language as described to this point works well for

objects which require symmetric replication across a potentially un-

bounded group of nodes. It is mute on the question of bootstrapping:

how does a newly-started node initially receive a replicated object to

use? For this, we take inspiration from Fabric [Liu, George, et al., 2009]

and provide syntax by which a program can name a global variable lo-

cated on some other Gallifrey node. Concretely, we suggest the syntax
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gal://hostname.tld/TypeName/Restriction/instance_name to name the

global object instance_name of type shared[Restriction] TypeName lo-

cated on the machine at hostname.tld.

Typestate and reopening branches. Earlier in this paper, we mentioned

that Gallifrey programmers can enter and exit in-progress branches. We

propose the syntax token.open(args...){body} by which programmers

can re-enter a branch, passing it new references to own and giving it

a new body to execute. The body here has access to all the objects the

branch already owns in addition to the ones newly passed in via open.

To further refine our information-flow type information and to enable

the token.open feature, we propose extending Gallifrey with typestate

on branch tokens. With typestate, linear items can acquire additional

labels on their types as the program evolves. Combining information

flow with typestate yields a novel variant of statically tracked, flow-sensitive

information flow. For token.open, this means that provisional behavior

introduced during open’s body does not require a provisional label on the

token before the point of open. Using this we can also extend abort and

pull, allowing programmers to recover (via peek) unique objects owned

by branches even after they have completed.

Actors. Gallifrey’s replicated objects are best suited to a setting where all

replicas are peers; we cannot comfortably capture concepts like “all nodes

may perform some operations and a designated owner node may perform

some additional operations”. To support explicitly centralized objects,

Gallifrey should include a native notion of unreplicated actors [Hewitt,

Bishop, and Steiger, 1973]. We have not yet explored how actors fit into

the design of Gallifrey.
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Subtyping on restrictions. We desire subtyping on restrictions for two

reasons. First, we would like to make it easy for users to write parametric

code. It should not be an error to pass a more permissive restriction (i.e.,

more operations allowed) to a function that expects a less permissive

restriction. The second is for encapsulation: a programmer may wish

to expose a reference to a shared object via a restriction that permits

fewer operations on that object, retaining the more permissive restriction

for themselves. To implement subtyping, we plan to view restrictions as

records of their allowed operations (with contingencies) and use standard

width subtyping on records.

Extensions to monotonic tests. Monotonic tests are used with when

blocks to set up a trigger. Once the condition in the when block becomes

true, then the body of the block executes. We believe the language of

expressions within the when block’s condition could be enriched. In general,

it should be safe to use any function on tests as part of a when’s condition

so long as those functions are monotonic with respect to boolean ordering.

We hope to take advantage of recent work by Clancy and Miller [Clancy

and Miller, 2017] to statically prove such functions monotonic and thus

safe for use in triggers.

Cursors. Our current typing rule for restrictions prevents any meth-

ods which return an object that may be connected to the receiver. We

propose extending the syntax of restrictions to allow such objects by

applying a subordinate restriction to the return result of their receiver-

exposing methods. The total restriction over the object consists therefore

of the restriction on the object itself, and all restrictions required on the

returned result of that object’s methods, (and restrictions applied to the re-

sults of those methods, etc). The results of these methods would behave as
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cursors into the shared object, allowing programmers to continue invoking

correctly-restricted operations against a refined interface.

3.9.2 Implementation Considerations

We envision Gallifrey as supporting the next generation of wide-area

replicated applications. To support heterogeneous applications, and es-

pecially to support our proposed branching feature, requires significant

enhancements to the current prototype. We enumerate some of these here.

Consistent synchronous branch merges. As mentioned in Section 3.7.2

branches with provisional operations can be synchronously committed

without risking provisional conflicts, giving programmers access to the

strong and expressive semantics of traditional transactions. We must strive

to make this transactional commit operation usable. In particular it must be

typically fast, for otherwise programmers will be tempted to fall back to

asynchronous pulls, inviting more provisional behavior than they may

truly require. A key challenge introduced by Gallifrey is its tendency

toward disconnection; it will be necessary to carry out these commits with

high probability even in the presence of intermittent disconnection.

Exposing flexibility to the user. There are many difficult trade-offs and

design decisions to be made in Gallifrey’s runtime. These trade-offs are

necessarily influenced by the particular Gallifrey deployment in question:

is the application running across data centers, or across phones? When

looking beyond the current Gallifrey prototype, we must strive to expose

such choices to the Gallifrey user. Only the user is an expert in their

deployment domain.
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3.10 conclusion

Our forays into Gallifrey represent a promising pathway towards better

concurrent, distributed programming. With restrictions, Gallifrey separates

what can be replicated from how it is shared, and provides a statically

enforced mechanism for ensuring consistent access to replicated objects.

With branches, Gallifrey unifies threads, transactions, and replicas into

a single intuitive construct. With contingencies, Gallifrey provides some

sanity to working with weakly consistent state, allowing explicitly scoped

violations of isolation and consistency.

Taken together, these features represent a compelling answer to the

question of how to write distributed, concurrent, programs with repli-

cated data. With our implementation, we can see that Gallifrey’s core

features—restrictions, restriction variants, and transitions—already pro-

vide a powerful platform for distributed programming.





4
A T Y P E S Y S T E M F O R I S O L AT I O N

4.1 introduction

Chapter 3 presented the design of Gallifrey, a new language for geodis-

tributed programs. For its core correctness guarantees, Gallifrey relies on

restriction safety: that every interaction with a shared object is made via

a restriction, which limits an object’s interface to only those methods

which are safe to call concurrently. These restrictions in turn relies on

a notion of isolation: that everything reachable via a restriction-guarded

object is only externally reachable via that object.

This pattern—that safe concurrent code is achieved through isolation—is

not unique to this work. It lies at the core of Rust, where the Rustbelt

project takes a “fiction of separation” approach to use separation (or

isolation) as a proxy for thread safety. It underpins the object-oriented race-

free abstractions work popular during the turn of the millennium. Under

a different guise, it’s even present in languages with safe manual memory

management, where capability-based or region-based type systems use

isolation to ensure programs only access reserved memory—leveraging the

intuition that “unreserved” memory may in fact belong to some other

context, with very different ideas of how that memory should be used.

The core idea that all of these systems share—and that Gallifrey

leverages—is that there is some set of reserved objects which can be safely
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accessed in a given context, and that access to any other object might

lead to undesirable behavior—for example a destructive race between

two threads or access to uninitialized memory. These systems provide

reservation safety: a correct program will never attempt to access memory

outside of its reservation. Each of these systems then proposes an intricate

static approach to prove reservation safety, preventing the programmer

from relying on costly runtime mechanisms or best practices.

But these systems involve significant complexity—much of which comes

from managing object graphs. It is tempting to say that whenever an object

is reserved, so too are all objects reachable from it; indeed, several existing

solutions do just this [Aldrich, Kostadinov, and Chambers, 2002; Almeida,

1997; Gordon et al., 2012; Hogg, 1991; Minsky, 1996; Naden et al., 2012].

But in an object-oriented program the vast majority of objects will be

connected in some way; to align reservations (the set of safely-accessible

objects) with connected components of the object graph is therefore too

coarse an approximation.

The challenge is to allow references that link objects in different reserva-

tions, without risking reservation safety. There is however no consensus

on how to accomplish this. Existing approaches have ranged from explic-

itly tracking all references [Protzenko et al., 2017], to requiring the object

graph have some regular tree shape [Rust Programming Language 2014],

to simply relying on the ability to implicitly null out references which

would otherwise point outside a reservation [Aldrich, Kostadinov, and

Chambers, 2002]. None of these systems captures exactly what Gallifrey

needs. Gallifrey requires a system with the following properties:
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• Minimizes programmer-facing complexity. We should not need to

significantly expand programmer-supplied annotations beyond the

keywords already introduced in chapter 3.

• Maintains object-oriented abstractions. Our approach needs to

work seamlessly with function abstraction, interfaces, inheritance,

subtyping, and crucially must assume pervasive mutability.

• Allows arbitrary object graphs. While many data structures are

naturally tree-like, certain useful data structures—such as doubly-

linked lists—are not. These must be expressible.

• Allows fine-grained changes to reservations. Common actions,

such as removing an item from a queue and sending it to a new

thread, dynamically change the set of reserved objects. It must be

possible to capture this without sacrificing access to swaths of objects

in the process.

• Never implicitly nulls a reference. Relying on implicit nullability ef-

fectively turns every reference into an option type, requiring constant

careful reasoning or defensive programming.

To address these challenges, this chapter presents a new type system

synthesizing the idea of static regions as defined by Tofte and Talpin

[Tofte and Talpin, 1994] and the focus mechanism from Fähndrich and

DeLine’s Adoption and Focus [Fähndrich and DeLine, 2002]. A region

is a statically-known set of objects which have an arbitrary, statically-

unknown number of links between them. With regions, each reservation

(the precise set of safely-accessible objects) is approximated by a region

reservation: a set of regions, such that an object in any region of a region
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reservation must also be a member of the true, dynamic reservation it

approximates. Statically, reservations are managed at the level of these

regions; as objects are removed from a reservation (perhaps via sending

them to some other thread) or added to a reservation (perhaps by receiving

them from some other thread), the corresponding regions are removed

or added to the region reservation. This eliminates the need to track the

precise relationship of every object in an object graph; by manipulating

reservations at the level of regions, a reservation can gain or lose a set of

connected objects without needing to statically understand precisely how

they are connected.

But we also need to describe connections between objects which cross

regions. By default, object fields may only contain references to other

objects within the same region; a special isolated keyword refers to fields

containing references whose target may live in any region. The targets

of isolated fields must be precisely statically tracked; for this we adopt

Fähndrich and DeLine’s “Adoption and Focus” mechanism.

We accomplish this with surprisingly little user-facing complexity. Users

need only decide which parts of their object graph should be separable

from the whole, and annotate those fields with the isolated keyword.

From there, users also must annotate function parameters to indicate if

they consume or preserve their arguments. Everything else is inferrable.

This relative simplicity in user-facing code is enabled by an observation:

if a programmer intends an object subgraph to be easily separable from its

parent, then there should not be many references from the parent into that

object subgraph, and all such references should be easy to find. In fact, in

the most common case there will be exactly one such reference, contained

in a single isolated field. This pattern has emerged for safety; once an
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object has been deleted, sent to a new thread, or had its lock released, any

further attempts to access it would be unsafe. The more references exist

to that object, the easier it is to use one of them accidentally. Following

this pattern, we introduce the idea of a simple object subgraph as one

in which all isolated references point to otherwise-unreachable regions.

This definition of simplicity captures the idea that most regions will be

reachable by only a single isolated link. By making simplicity default, we

need only explicitly track deviations from this simplicity—as may arise

during object construction or in the process of swapping isolated fields.

These deviations can be inferred so long as they do not cross abstraction

boundaries.

4.2 overview

4.2.1 An Intuition for Reservations

A reservation is the set of objects that a given context may safely access. For

example, in a concurrent language the reservation for each thread may

consist of the objects which only that thread can name, plus any objects

guarded by a lock that thread currently holds. Certain system events can

cause a change in the reservation. For example, sending a message to

a new thread would remove the objects that comprise the message from

the sending thread’s reservation, and add them to the receiving thread’s

reservation. For the purposes of this chapter, we do not address how

reservations are generated. In our formal treatment, the reservation—
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which is just a set of locations—is an explicit member of the configurations

over which our small-step semantics (4.7.3) are defined.

Using these reservations, we statically guarantee reservation safety: that

no step of evaluation will attempt to access a location outside of its

reservation.

4.2.2 An Intuition for Regions

To provide a static guarantee of reservation safety requires a type sys-

tem to statically and conservatively approximate reservations. Doing this

precisely—with static knowledge of every reference to every individual

object—swiftly becomes undecidable for realistic languages. Instead, the

type system does this at the level of regions. Regions group objects which

may be connected without needing precise static information about how

those objects are connected. Sets of regions approximate a reservation: all

objects within this set of regions must also lie within the reservation it

approximates. Events which change a reservation—for example sending

objects across thread boundaries—do so at the granularity of regions. This

frees the type system from needing to statically track every reference

directly; it must now only statically track those references which cross

regions.

Tracking cross-region references statically requires a trade-off between

expressiveness at the cost of a high annotation burden, or low programmer-

facing complexity at the cost of restrictions on the shape of the object graph.

We choose a middle road: we require minimal programmer annotations
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in the default case, with additional annotations required only when the

object graph deviates from a simple shape.

In particular, we first require that all potential cross-region references are

annotated with a special isolated keyword. References marked isolated

may refer to any object in any region; references not marked isolated may

only refer to objects in their own regions.

Next, we define a simplicity property. We define a simple region in

terms of the region graph, an abstraction of the object graph. Nodes in the

region graph are regions, and a directed edge exists between any two

regions if an object in one region contains a reference to an object in the

other. Using this graph, we say a region is simple if the graph of regions

reachable from it forms a tree. We similarly define a simple isolated

reference as one whose target is a simple region, and a simple object

as one all of whose isolated fields are simple. As a program executes,

certain simple references, regions, and objects may become non-simple,

and certain non-simple references, regions, and objects may become simple.

This is desirable; normal patterns—such as swapping two isolated fields—

pass through temporary non-simple states, only to return to simplicity

moments later. When swapping references, there will be a point after the

first field has been replaced (but before the second) when both first and

second point to the same region, a temporary violation of simplicity.

At function boundaries, we require that arguments’ and returned results’

regions satisfy this simplicity property. This invariant of simple regions,

combined with the program text of the function body, provides enough

information to infer the targets of cross-region references during type-

checking, regardless of their simplicity.
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Formally, a region is a set of objects wherein all references from an

object inside the region to some object outside of the region are marked

isolated. No two regions may intersect.

4.2.3 A Running Example

To concretize the ideas of regions and reservations we introduce the

example of a doubly-linked list, backed by the Java class LinkedList<T>:

Example 4.2.1. A doubly-linked list.

class LinkedList<T>{

static class ListNode {

ListNode next;

ListNode prev;

T payload;

}

ListNode head;

};

Instances of the outer LinkedList<T> class contain a single head field.

This field points to an instance of the inner ListNode class, which contains

references to the next node in the list, the previous node in the list, and a

payload element stored in this list node. Figure 4.1 illustrates an instance

of this class.

To use this linked list without violating reservation safety, it must first be

divided into regions. As regions are the granularity at which reservations

gain or lose objects, this is effectively the same question as determining

which parts of this linked list should be detachable. One must balance
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Figure 4.1: An instance of a doubly-linked list. The rectangle labeled “LinkedList”
is an instance of the outer LinkedList class, while the circles labeled
“ListNode” are instances of the inner ListNode class. The arrows
represent references connecting the objects; the dashed arrows are
meant to indicate that an arbitrary number of ListNode instances may
precede or follow the ones illustrated here.

this against the need to ensure such references are simple at function

boundaries: the region graph must form a forest connected via isolated

references.

The payload references of the list nodes nicely satisfy both criteria. It

is natural to remove items from a list and send them to a new thread; to

support that functionality, the regions in which each payload resides must

all be distinct, and none may contain the list itself. Checking our simplicity

criteria, if each payload lives in a separate region and the remaining objects

live in a single list region, then the regions clearly form a tree. Figure

4.2 illustrates this region assignment; here, the red rounded rectangles

indicate regions.

An even more precise region assignment is also possible. One should

always seek to find the most-precise region assignment which preserves
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Figure 4.2: A revision of 4.1 in which the rounded rectangles indicate regions.
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Figure 4.3: A revision of 4.2 in which we have separated the LinkedList into a
separate region from the ListNodes.
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simplicity; the more precise the region assignment, the more accurately it

will reflect the true reservation as regions are removed and added. The

primary drawback of having more regions is the need to ensure they are

simple at function boundaries; a winning strategy for determining regions

is thus to look for the most precise region assignment which still forms a

tree. Using this heuristic reveals that the governing LinkedList instance

contains a reference only to a ListNode. As there should never be any

path from that ListNode back to the LinkedList instance, the LinkedList

instance can have its own region without violating simplicity. This final

region assignment is illustrated in 4.3.

Syntactically, this region assignment is described by applying the

isolated keyword to both the head field of LinkedList<T>, and the

payload field of ListNode, as shown below:

Example 4.2.2. A doubly-linked list.

class LinkedList<T>{
static class ListNode {
ListNode next;
ListNode prev;
isolated T payload;

}
isolated ListNode head;

};

This modest amount of annotation is all that is required of the user,

nicely satisfying the goal of reducing user-facing complexity.

4.3 tracking regions and reservations statically

The remainder of this chapter builds out a type system for a language with

regions iteratively. We will start with only sequences, variable declaration,

field reference, and field assignment, assuming that complex objects—such
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e ::= e; e | x | x = e | e. f | e. f = e
τ ::= Cls | . . .

fields(Cls) ::= { f : qr τ, . . .}
qr ::= isolated | ·

Figure 4.4: A syntax of sequences, structures, and assignment. The f metavariable
ranges over field names; the x metavariable ranges over variable names;
the Cls metavariable ranges over class names. Our types are just class
names; to inspect these types, one can use the fields function to project
out the set of fields contained in the class. These fields are typed, and
each may be annotated with the isolated keyword.

as the running doubly-linked list example—are already bound in our

initial context. We will then extend this language to include functions and

the familiar language constructs of IMP. After this point, we will introduce

a dynamic semantics for our language and demonstrate that our type

system proves reservation safety for this language. We then introduce an

extension to the core language, discuss related work, and conclude.

4.3.1 A Language and Typing Contexts for Structures

The core of our type system is its treatment of structures. We thus start

with a tiny language containing the bare minimum needed to discuss

structures.

The syntax for this language can be found in figure 4.4. This syntax

describes classes which can be referred to by name, and whose fields may

listed via the fields function. Each field may be qualified by the isolated

keyword. The syntax is otherwise completely standard. The semantics is

that of java; field access returns a reference, and assignment overwrites the
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value of the reference on the left-hand side with the value of the reference

on the right-hand side. We choose Java semantics here to better match

Gallifrey, which is implemented as an extension to Java. The formal small-

step semantics of this language can be found as part of the full language

in section 4.7.3.

This language needs a type system whose static typing contexts are

capable of tracking the destination regions of all isolated references. This

is no easy task; as illustrated by the dashed lines in figure 4.3, there are

in fact arbitrarily many regions contained even in the running linked

list example. To capture this in a finite context, we turn to the idea of

simplicity. As discussed previously, a simple isolated reference dominates

its object graph: all paths from roots (e.g. references on the stack) to any

object reachable via a simple isolated reference must transit that isolated

reference. Put differently, if a simple isolated reference were to be set

to null, then the entire object graph reachable from it (before it was set

to null) is now unreachable. Further, all objects reachable from a simple

isolated reference must be in the current reservation. This provides a

default structure to work with, freeing the static contexts to only track

exceptions to simplicity.

Building on this idea, we define two static typing contexts. First is Γ,

which binds variables. All variables in this language contain references; as

such, Γ associates variables with both a type τ and a region ` in which the

object pointed to by the variable lives: x : ` τ ∈ Γ. Next comes H, which

describes our heap context. This context is responsible both for tracking the

current reservation, and for tracking the source and destination of every

isolated reference. H is formalized as a set of regions; all regions in H,
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Γ ::= x : ` τ, Γ | ·
H ::= `〈〉,H | `〈X〉,H | ·
X ::=x[F], X | ·
F ::= f 7→ `, F | ·

Figure 4.5: The definition of typing contexts Γ and H. Here ` names regions. As
before, f names fields and x names variables.

Γ;H well-formed

∀x : ` τ ∈ Γ, `′〈x[. . .], . . .〉 ∈ H: ` = `′

` Γ;H

Figure 4.6: A well-formedness condition on Γ and H, requiring any variables
associated with some region in Γ are associated with that same region
in H.

as well as all regions reachable from simple isolated fields of objects in

those regions, are known to be in our current reservation. `〈...〉 ∈ H.

The regions in H have additional structure beyond just a name. Because

not every object in a region is guaranteed to be simple at all times, the

regions in H need a way to describe any objects that violate simplicity.

This is done by explicitly listing such objects within the region. Each object

is referenced via some variable name from Γ, and is associated with a set of

fields which reference some other named region. `〈x[ f 7→ `′, . . .], . . .〉 ∈ H.

The syntactic definitions of both Γ and H can be found in figure 4.5. While

we use the syntax of lists in defining these structures, they are actually

unordered; these environments are sets. Thus if a rule appears to match

on the first or last element of some environment, it should instead be read

as matching on any element contained in the environment.

Figure 4.6 states a well-formedness condition for Γ and H: we say that a

pair of environments Γ and H are well-formed when if a variable explicitly
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tracked in H is bound in Γ, then that variable is tracked in and bound to

the same region in both H and Γ.

4.3.2 Describing Objects via Static Environments

This subsection presents some example objects, and shows how the struc-

ture of those objects is encoded in Γ and H. To start, recall the linked list

from 4.2.2. In all these examples a linked list is bound to the variable x.

In a simple state, this linked list—no matter its size— can be captured

via the following context:

Γ = x : ` LinkedList<T>; H = `〈 〉

In which x refers to some simple linked list, and ` is an arbitrarily-chosen

name for the region in which this list lives.

At first glance, this might be surprising; after all, the illustration of this

list (figure 4.3) included an unbounded number of regions, yet this static

context mentions only one. This is because our linked list, as illustrated

in (figure 4.3), is entirely simple. Every isolated reference in this list

refers to some new, otherwise-unreachable region; one needs only to

explicitly mention these regions in H when some other reference can reach

them. Nevertheless, H is also able to explicitly include some of them. The

following context also captures the linked list:

Γ = x : ` LinkedList<T>; H = `〈x[head 7→ `′]〉, `′〈 〉
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Here H explicitly records that the object referred to by x has a field head

which references some region `′. As `′ contains no explicit contents in H,

it must be the case that all objects in `′, and all objects other than x in H,

are simple.

The primary use of this extended context is not to add detail to simple

regions, but rather to express non-simple ones. Given a linked list bound

to x, the following assignment results in a non-simple region:

y = x.head

Here, the isolated reference x.head has been aliased into y, providing

a path by which the head of the linked list may be directly referenced—

implying that x.head no longer dominates its reachable object graph.

Moreover, y and x.head both refer to some object in the same region. This

is captured in the following context:

Γ = x : ` LinkedList<T>, y : `′ ListNode; H = `〈x[head 7→ `′]〉, `′〈 〉

As H explicitly lists x with a field head which refers to an object in `′, Γ

must declare that y is also bound to an object in `′. This extra detail tracks

the fact that y and x.head both point to the same region; if x.head leaves

the reservation, y is removed as well.

This context can be used to describe more interesting irregular structures

as well. For example, consider the following code (again where x is bound

to a linked list):

y = x.head; z = y.payload; consume z
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Here consume is some special keyword that causes the reservation to

drop z. After the execution of this fragment, the state of the list can be

tracked by this context:

Γ = x : ` LinkedList<T>, y : `′ ListNode, z : `′′ ListNode

H = `〈x[head 7→ `′]〉, `′〈payload 7→ `′′〉

Here both x and y.payload are bound to the region `′′, which is omitted

from H. This renders x and y.payload inaccessible.This works well with

the invariant on H: all isolated fields which are not explicitly tracked in

H refer to simple regions contained within the heap reservation (X), and

all regions explicitly listed in H are also within the heap reservation (X).

H is capable of capturing exceptions to simplicity beyond the validity

of certain isolated references; explicitly-tracked isolated fields are not

constrained to a tree shape, and thus can capture an arbitrary object

graph—so long as one is willing to explicitly enumerate it. Here is a silly

example in which the head node of the linked list actually lives in the same

region as the LinkedList instance, despite the presence of the isolated

keyword on head:

Γ = x : ` LinkedList<T>; H = `〈x[head 7→ `]〉

Here x, which lives in region `, has some explicitly-tracked head field

whose target also lives in region `.

An important restriction is that H only tracks isolated fields; all non-

isolated fields are restricted at all times to refer to objects within their

region. It is impossible, for example, to capture a ListNode whose next
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reference crosses regions. But from this limitation comes a great deal of

freedom; objects in the same region can be arbitrarily linked via non-

isolated references, without requiring these references explicitly appear

in a static typing context.

Intermixing both isolated and non-isolated references plays both

sides of the trade-off inherent in static reference tracking. On one side we

can form references between objects in the same region without worrying

about the decideability of tracking them, but in exchange must assume

the worst case: that all objects in a region are connected. On the other

side, we have precise knowledge of where references point, and so need

make no such connectivity assumption; but the cost of this knowledge

is a large footprint in the static context, which would be difficult to infer

across abstraction boundaries.

4.3.3 A Type System for Manipulating Structures

Building on the definitions of Γ andH, we now introduce a type system for

the language fragment in figure 4.4. In presenting this language, we have

chosen to break the rules out into a set of core “typing” rules (figure 4.7)

and a set of “heap” rules (figure 4.8). We do this for presentation; building

an abstraction of heap manipulation syntactically removed from that of

the traditional aspects of typechecking allows us to present the essence of

our system—the transformation of regions—without the ancillary aspects

of typechecking. While the presentation makes it appear as though there

is a separate language of heap manipulation, this is not so; every heap

rule is referenced directly in the premise of some typing rule.



4.3 tracking regions and reservations statically 205

varref

H ` `

H; Γ, x : ` τ ` x : ` τ a H; Γ

sequence

H; Γ ` e1 : `1 τ1 a H′; Γ′ H′; Γ′ ` e2 : `2 τ2 a H′′; Γ′′

H; Γ ` e1;e2 : `2 τ2 a H′′; Γ′′

field reference

H; Γ ` e : ` τ0 a H′; Γ′

f : qr τ ∈ fields(τ0) H′ ` qr e@`. f : `′ H′ ` `′

H; Γ ` e. f : `′ τ a H′; Γ′

field assignment

H; Γ ` e1 : ` τ0 a H′; Γ′ f : qr τ ∈ fields(τ0)
H′; Γ′ ` e2 : `′ τ a H′′; Γ′′ ` qr e1@`. f = `′ : H′′ ⇒ H′′′

H; Γ ` e1. f = e2 : `′ τ a H′′′; Γ′

assign-Γ
H; Γ ` e : `τ a H′; Γ′, x : `iτ H′ ` x@`i = `

H; x : `0τ, Γ ` x = e : ` τ a H′; Γ′, x : `τ

Figure 4.7: A set of typing rules for the language from figure 4.4, written with
reference to rules in figure 4.8.
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Typing judgments have the form H; Γ ` e : ` τ a H′; Γ′. This judgment

means that the result of e is an object of type τ in region `, and that

in the course of evaluating e the “input” environments H;Γ have been

transformed into the “output” environments H′; Γ′. We treat both Γ and H

linearly, using environment-passing style. This reflects the fact that an ex-

pression which modifies H or Γ does not do so within a syntactic scope; all

subsequent expressions must be aware of this modification. For example,

in evaluating the sequence x.f = x.g; x.g = x.f it is likely important

that the second assignment is typechecked under an environment which

reflects the results of the first assignment.

We now drill down into the typing rules in figure 4.7. Beyond some

syntactic oddities, these rules are largely straightforward. The rule for

sequence checks its left-hand expression in its “input” context against an

“output” context matching the “input” context of its right-hand side. The

result of the sequence is the last expression executed within it; thus the

type and region of e2’s result is the type and region of the full sequence

result.

The rules for field reference, field assignment, and variable assignment

are somewhat more interesting. Both rules just check their subexpressions

under the relevant environments, threading through their typing contexts

(as in sequence). But both rules also rely on heap judgments.

Heap judgments come in two different forms, corresponding intuitively

to judgments which query the heap, written H ` ϕ, and judgments for

modifications to the heap, written Γ ` cmd : H ⇒ H′. While this is written

as though ϕ and cmd are selected from some language, we must emphasize

again that they are not; rather than think of them as referring to statements
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isolated-field-reference

H′, `〈x[F, f 7→ `′]〉 ` isolated x. f @` : `′

isolated-field-assignment

` isolated x. f @` = `′ : H, `〈x[F, f 7→ `′′]〉 ⇒ H, `〈x[F, f 7→ `′]〉

non-isolated fields

H ` · e. f @` : `
non-isolated assignment

` · e. f @` = ` : H ⇒ H

region-valid

H, `〈X〉 ` `

untracked

x /∈ {x1, . . . , xn}
H, `〈x1[F1], . . . , xn[Fn]〉 ` x@` untracked

assignment-valid

H ` x@` untracked

H ` x@` = `′

Figure 4.8: A set of “heap” rules for the type system in figure 4.7.

in a language, think of them as indexing different otherwise-syntactically-

identical judgments.

We now pause our exploration of the typing rules to review the heap

rules in figure 4.8. The first two rules, isolated-field-reference and

isolated-field-assignment, correspond to assignment and field reference

for isolated fields. These rules directly use the structure of H presented

in the previous section. To look up the region referenced by the isolated

field f of some object x in region `, ` must be is explicitly tracking some

x with field f in H;, the region referenced by f is explicitly listed therein.

To assign to some field f of some object x in region `, f must similarly be

explicitly tracked; its mapping is then updated from some previous `′′ to

our new target `′.

The next two rules handle field reference and assignment for non-isolated

fields. These rules are less complex. As it is a requirement that all non-

isolated fields refer to objects in the same region, H has no role; rather, any
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non-isolated field reference from an object in region ` returns an object in

region `, and assignment is allowed between any two objects in the same

region.

Finally, we come to region-valid, untracked, and assignment-valid.

The region-valid rule checks if ` is the name of a region within H. The

assignment-valid rule is slightly more complex; because variable names

refer directly to objects within H, we cannot allow assignments to tracked

variables. The assignment-valid rule therefore checks if the variable is

tracked by reference to the untracked rule.

We can now return to figure 4.7 and discuss how the field reference

and assignment typing rules use the corresponding heap rules. In field

reference, the expression’s result has a field f with the possible isolated

keyword captured in qr; the premise includes a field-reference heap judg-

ment with this information, determining first that f refers to an object in

some region `′, and second that this region is actually within the reser-

vation and thus may be accessed. In field assignment, we similarly

determine that the left-hand expression’s result lives in region ` and has a

field f with the possible isolated keyword captured in qr, and that the

right-hand expression lives in some region `′. We then use the heap rule

for assignment to determine whether this assignment is admissible and

what effect it will have on the heap, if any. Variable assignment proceeds

similarly, with two important exceptions. First, we do not care if the region

labels of the left- and right-hand sides match; as Γ is an affine environ-

ment, we can just change the target’s label in the output context. Second,

this assignment cannot change the heap context; instead, any assignment

which would have required a change to the heap context is prevented by

the heap rule in the premise.
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It may occur to the reader at this point that the typing rules, as presented,

require contexts which already reflect the presence of variables in Γ and

the precise destinations of isolated fields in H; the rules for introducing

variables in Γ and determining what to track in H will be presented later.

4.3.4 Typechecking Examples

With this fragment of our system in hand, we can now typecheck some

single-line examples. In each example, the typing context comes before

each line.

Example 4.3.1. Checking a non-isolated assignment.

Γ = x : ` ListNode; H = `〈 〉
x.next = x.next.next //uses non-isolated field reference and assignment
Γ = x : ` ListNode; H = `〈 〉

This example shows that checking a non-isolated field assignment does

not change the typing context at all; the typing context is only used to

ensure that both sides of the assignment live in the same region, and that

this region is within the reservation.

Example 4.3.2. Checking an isolated assignment.

Γ = x : ` ListNode, y : `′ ListNode;
H = `〈x[payload 7→ `x]〉, `′〈y[payload 7→ `y]〉, `x〈 〉, `y〈 〉
y.payload = x.payload //non-isolated field access and isolated assignment
Γ = x : ` ListNode, y : `′ ListNode;

H = `〈x[payload 7→ `x]〉, `′〈y[payload 7→ `x]〉, `x〈 〉, `y〈 〉

As this example illustrates, assignments between isolated references in

different regions are allowed; as a result, the heap context is updated to

track that y.payload now points to `x, the same region as x.payload. This
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does, however, mean that the heap is no longer simple, as two different

isolated references now refer to the same region. This is a cost, and it

will come due when we introduce functions.

Assignments to isolated references need not be from other isolated

references, as shown in the next example.

Example 4.3.3. An isolated assignment from a variable.

Γ = x : ` ListNode, y : `′ T;
H = `〈x[payload 7→ `x]〉, `′〈〉, `x〈 〉
x.payload = y //uses variable reference and isolated assignment
Γ = x : ` ListNode, y : `′ T;
H = `〈x[payload 7→ `′]〉, `′〈〉, `x〈 〉

Here the isolated payload is being set to the value of y, which is some

existing payload in a different region. This assignment is allowed, and

modifies the heap to have payload refer to the same region as y. It also

would have been possible to write this example even if y were in the

same region as x or x.payload; the result may not have been simple, but it

would be allowed so long as the relevant isolated references are explicitly

tracked in a region in H.

There are also several more unusual positive examples:

Example 4.3.4. A self-assignment, possible with a LinkedList<ListNode>.

Γ = x : ` ListNode; H = `〈x[payload 7→ `x]〉
x.payload = x.next //non-isolated field access and isolated assignment
Γ = x : ` ListNode; H = `〈x[payload 7→ `]〉

This example demonstrates two things. First, x.payload is an inacces-

sible object at the beginning of this snippet; the left-hand side of an

assignment need not refer to a valid object, as the assignment expression

will overwrite this reference in any case. Second, this example assigns the

object at a non-isolated field into and isolated field. This is no different
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than any other assignment to an isolated field; we just update the tracking

in H to point to the correct region. As before, this new heap is not simple.

One could also write the reverse of this example:

Example 4.3.5. A less sensible self-assignment, possible with a
LinkedList<ListNode>.

Γ = x : ` ListNode; H = `〈x[payload 7→ `]〉
x.next = x.payload //isolated field access and non-isolated assignment
Γ = x : ` ListNode; H = `〈x[payload 7→ `]〉

Here an isolated reference is assigned into a non-isolated field of the

same object. This is a violation of simplicity, and is only legal here because

x already was non-simple before the assignment, as it lived in the same

region to which one of its isolated fields pointed.

4.3.5 Limitations: the Puzzle of Aliasing

Of course, not all possible programs will typecheck; it is possible to

turn every positive example from the previous subsection into a negative

example by invalidating one of the context assumptions on which it

relies. But there are actually interesting limits with this system beyond

straightforward region or variable mismatches. Consider for example the

following.

Example 4.3.6. An invalid assignment.

Γ = x : ` ListNode; H = `〈x[payload 7→ `′]〉, `′〈 〉
x.payload = x.next.payload //cannot reference x.next.payload
ERROR.

This example attempts to assign x.next.payload into x.payload. This

will not typecheck; the rule for isolated field reference, which we will
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need to apply to read x.next.payload, requires that the exact expression

under consideration—here x.next—already be tracked in H.

It may in fact be impossible to build an H in which both x and x.next are

tracked. This is due to aliasing. There is nothing in the type or simplicity of

x to declare that x and x.next must refer to separate objects. Conservatively,

they could be one in the same; each region could in fact contain a single

object, and every expression whose result lives in this region refers to the

same object. In such a situation, it would be an error to include both x and

x.next in the same region in H; as each variable tracked in a region in H

must refer to a distinct object.

In point of fact, without knowledge of aliasing we will never be able

to explicitly track more than one object per region. Without some sort

of dynamic check or the integration of an alias analysis oracle, the rules

presented here will only be able to track a single object per region.

4.4 virtual commands

The rules presented in section 4.3 show how the Γ and H contexts track

modifications to the heap: they require that every use of an isolated field

is made in a context where H explicitly tracks the source and destination

of that field. But this has not addressed the challenge of tracking isolated

references so much as moved it; it did not reveal how variables became

tracked in H in the first place. To track individual variables in H, we

introduce the idea of virtual heap commands.
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4.4.1 Focusing and Exploring

Consider the following small example program:

Example 4.4.1. Some innocuous assignments.

Γ = x1 : ` ListNode, x2 : `′′′ ListNode, y : `′ T, z : `′′ T;
H = `〈x1[payload 7→ `]〉, `′〈 〉, `′′〈 〉
1: x1.payload = y; //OK: use variable reference and isolated assignment
Γ = x1 : ` ListNode, x2 : `′′′ ListNode, y : `′ T, z : `′′ T;
H = `〈x1[payload 7→ `′]〉, `′〈 〉, `′′〈 〉
2: x2 = x1.next; //OK: non-isolated field reference and variable assignment
Γ = x1 : ` ListNode, x2 : ` ListNode, y : `′ T, z : `′′ T;
H = `〈x1[payload 7→ `′]〉, `′〈 〉, `′′〈 〉
3: x2.payload = z; //ERROR: x2.payload not tracked in H

Under the rules presented so far, this example will not typecheck, be-

cause the variable x2 is not tracked in H. In fact H cannot safely track

both x1 and x2 simultaneously. As x1 and x1.next are different objects,

H cannot include both of them at the start of code fragment. Without

knowing if x1 and x1.next are distinct, we aren’t sure whether the assign-

ment in line 3 will overwrite the assignment in line 1; at the end of this

fragment, it’s possible that x1.payload and x2.payload point to the same

or different regions. We run the risk of confusing the regions pointed to

by x1.payload and x2.payload.

But there is a way to make this example typecheck. In section 4.3.2,

we mentioned that objects need only be explicitly tracked in H if they

contained non-simple isolated fields; while one could explicitly track any

isolated reference they desire in H, the primary purpose of doing so is

to allow that field to violate simplicity. After line 2, there is no longer a

purpose in tracking x1 in H at all—y is the only thing preventing x1 from

being entirely simple, and y is never used again.
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What we’d like to do here is explicitly invalidate y and remove x1 from

tracking in H entirely, replacing it with x2 and permitting the assignment

in line 3 to go forward. Effectively, we want to move from this context:

Γ = x1 : ` ListNode, x2 : ` ListNode, y : `′ T, z : `′′ T

H = `〈x1[payload 7→ `′]〉, `′〈 〉, `′′〈 〉

To this context:

Γ = x1 : ` ListNode, x2 : ` ListNode, y : `′ T, z : `′′ T

H = `〈〉, `′′〈 〉

And finally to this context:

Γ = x1 : ` ListNode, x2 : ` ListNode, y : `′ T, z : `′′ T

H = `〈x2[payload 7→ `′′′]〉, `′′〈 〉, `′′′〈 〉

The first transformation just removes both the region `′ and the track-

ing on x1 from the heap context entirely. This satisfies the heap context

invariants; in order to remove x1.payload from tracking x1.payload must

refer to a region which was (1) not otherwise reachable and (2) not present

in H. Just removing its target from H kills two birds with one stone: any

existing references to that region will now become unusable (as they point

to a region no longer in H), ensuring that x1.payload really is the only re-

maining valid reference with access to that region. At the cost of rendering

y unusable, H no longer tracks this object.
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focus-heap

Γ, x : ` τ ` focus `@x : H, `〈〉 ⇒ H, `〈x[ ]〉

unfocus-heap

Γ ` unfocus `@x : H, `〈x[], X〉 ⇒ H, `〈X〉

explore-heap

F = f1 7→ `1, . . . , fn 7→ `n f /∈ { f1, . . . , fn} `′ fresh
Γ ` explore `@x. f : H, `〈x[F], X〉 ⇒ H′, `〈x[F, f 7→ `′], X〉, `′〈 〉

retract-heap

Γ ` retract `′ : H, `〈x[F, f 7→ `′], X〉, `′〈〉 ⇒ H, `〈x[F], X〉

Figure 4.9: Virtual heap commands.

With x1 no longer tracked in H we’re free to take the next transforma-

tion step, moving to the symmetric case where x2 is in H instead. Note

that none of these steps require reasoning about whether x1 and x2 are

in fact the same or different objects. By ensuring only one of them is

tracked at a time, our type system has enforced that no context will ever

simultaneously have access to both x1.payload and x2.payload. This elim-

inates the possibility of confusing the isolated regions reachable from

x1 and x2; that in turn eliminates any possible errors arising from their

potentially-aliased state. And all it cost was losing access to y.

These intuitions are formalized as a set of virtual heap commands found

in figure 4.9. In the focus-heap rule, a region which has no currently-

tracked objects may choose to track any variable bound by Γ. This does not

change the dynamic heap or reservation represented by H; rather, instead

of having an implicitly simple x in `, we now have explicitly tracked

that simple x. The unfocus-heap rule provides the reverse. Here any

clearly-simple x tracked in a region can be removed from H.
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It is important to note at this point that focus-heap and unfocus-heap

aren’t exact opposites. The Unfocus-heap rule stops tracking any object

with no tracked fields, while the focus-heap rule starts tracking an object

only in a region with no other tracked objects. The reason for this once again

comes down to aliasing. It is essential that every tracked entry in ` refers to

a distinct object—and the information available in Γ and H is not sufficient

to determine if any two objects are aliases. As mentioned previously,

integration with an alias analysis oracle may be one way to safely focus

additional variables.

The next two rules in figure 4.9 discuss tracking fields of an already-

tracked object. These leverage the invariant that a field not already explic-

itly tracked in H must point to some otherwise-inaccessible region within

the current reservation. Leveraging this, explore-heap generate a new

name for the region to which a newly-tracked field refers, and add this

new, simple region to H. Similarly, retract-heap stops tracking a field

whose target is a simple region in H, removing the target region from H

in the process. This too is to maintain an invariant: if f is not tracked, then

the region it refers to cannot be listed in H.

A natural question at this point would be: why have an “unfocus” and

“retract” instead of associating focus and explore with a scope? As

discussed in section 4.5, it’s not always possible to unfocus or retract at

the end of a natural scope; moreover, doing so would eliminate the ability

to introduce non-simple functions later.

With these new rules in hand, we can now return to our example and

begin to see how it might typecheck:

Example 4.4.2. Some innocuous assignments, with virtual heap com-
mands.
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Γ = x1 : ` ListNode, x2 : `′′′ ListNode, y : `′ T, z : `′′ T;
H = `〈x1[payload 7→ `]〉, `′〈 〉, `′′〈 〉
1: x1.payload = y; //OK: use variable reference and isolated assignment
Γ = x1 : ` ListNode, x2 : `′′′ ListNode, y : `′ T, z : `′′ T;
H = `〈x1[payload 7→ `′]〉, `′〈 〉, `′′〈 〉
2: x2 = x1.next; //OK: use non-isolated field reference and variable assign-

ment
Γ = x1 : ` ListNode, x2 : ` ListNode, y : `′ T, z : `′′ T;
H = `〈x1[payload 7→ `′]〉, `′〈 〉, `′′〈 〉
retract `’ // OK, but we lose `′, rendering y inaccessible
Γ = x1 : ` ListNode, x2 : ` ListNode, y : `′ T, z : `′′ T;
H = `〈x1[ ]〉, `′′〈 〉
unfocus `@x1

Γ = x1 : ` ListNode, x2 : ` ListNode, y : `′ T, z : `′′ T;
H = `〈 〉, `′′〈 〉
focus `@x2

Γ = x1 : ` ListNode, x2 : ` ListNode, y : `′ T, z : `′′ T;
H = `〈x2[ ]〉, `′′〈 〉
explore `@x2.payload

Γ = x1 : ` ListNode, x2 : ` ListNode, y : `′ T, z : `′′ T;
H = `〈x2[payload 7→ `′′′]〉, `′′′〈 〉, `′′〈 〉
3: x2.payload = z; //OK: use variable reference and isolated assignment
Γ = x1 : ` ListNode, x2 : ` ListNode, y : `′ T, z : `′′ T;
H = `〈x2[payload 7→ `′′]〉, `′′′〈 〉, `′′〈 〉

These virtual heap commands must still be integrated into our typing

rules. In practice, the typechecker will be free to use these virtual com-

mands wherever it desires, introducing a proof search component into

the process of typechecking our language fragment. But formalizing this

search process directly will complicate efforts to prove our system correct;

instead, we choose to directly reflect these heap commands in the surface

syntax of the language, as in figure 4.10. One important detail of our

choice here is that we have not directly exposed the names of regions in

the surface syntax; this will be important later, as we will rely on the fact

that these names are chosen arbitrarily.
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e ::= . . . | focus x | explore x. f | retract e | unfocus x
cmd ::=focus `@x | explore `@x. f | retract ` | unfocus `@x

focus

H; Γ ` x : ` τ a H′; Γ′ Γ′ ` focus `@x a H′ ⇒ H′′

H; Γ ` focus x : ` τ a H′′; Γ′

explore

H; Γ ` x : ` τ a H′; Γ′

Γ′ ` explore `@x. f : H′ ⇒ H′′ H′′; Γ′ ` x. f : `′ τ a H′′′; Γ′′

H; Γ ` explore x. f : `′ a H′′′; Γ′′

retract

H; Γ ` e : ` τ a H′; Γ′ Γ′ ` retract ` : H′ ⇒ H′′

H; Γ ` retract e : ⊥ void a H′′; Γ′

unfocus

H; Γ ` x : ` τ a H′; Γ′ Γ′ ` unfocus `@x : H′ ⇒ H′′

H; Γ ` unfocus x : ` τ a H′′; Γ′

Figure 4.10: Syntax and typing rules for tracking.
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Finally we have built up the mechanism required to type the example

properly.

Example 4.4.3. Some innocuous assignments, with surface-syntax heap
commands.

Γ = x1 : ` ListNode, x2 : `′′′ ListNode, y : `′ T, z : `′′ T;
H = `〈x1[payload 7→ `]〉, `′〈 〉, `′′〈 〉
1: x1.payload = y; //OK: use variable reference and isolated assignment
Γ = x1 : ` ListNode, x2 : `′′′ ListNode, y : `′ T, z : `′′ T;
H = `〈x1[payload 7→ `′]〉, `′〈 〉, `′′〈 〉
2: x2 = x1.next; //OK: non-isolated field access and variable assignment
Γ = x1 : ` ListNode, x2 : ` ListNode, y : `′ T, z : `′′ T;
H = `〈x1[payload 7→ `′]〉, `′〈 〉, `′′〈 〉
retract y // OK, but we lose `′, rendering y inaccessible
Γ = x1 : ` ListNode, x2 : ` ListNode, y : `′ T, z : `′′ T;
H = `〈x1[ ]〉, `′′〈 〉
unfocus x1

Γ = x1 : ` ListNode, x2 : ` ListNode, y : `′ T, z : `′′ T;
H = `〈 〉, `′′〈 〉
focus x2

Γ = x1 : ` ListNode, x2 : ` ListNode, y : `′ T, z : `′′ T;
H = `〈x2[ ]〉, `′′〈 〉
explore x2.payload

Γ = x1 : ` ListNode, x2 : ` ListNode, y : `′ T, z : `′′ T;
H = `〈x2[payload 7→ `′′′]〉, `′′′〈 〉, `′′〈 〉
3: x2.payload = z; //OK: use variable reference and isolated assignment
Γ = x1 : ` ListNode, x2 : ` ListNode, y : `′ T, z : `′′ T;
H = `〈x2[payload 7→ `′′]〉, `′′′〈 〉, `′′〈 〉

4.4.2 Attaching Regions

The focus, explore, retract, and unfocus virtual commands cause the

static contexts to gain (and lose) information about specific objects within

a region. To these we add an additional virtual command: attach. The

attach command allows the heap context to “forget” that two regions

were distinct, renaming all references to one into references to the other.
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e ::= . . . | attach e to e
cmd ::= . . . | attach ` to `

attach-heap

H′ = H[`1 7→ `2] X′1 = X1[`1 7→ `2] X′2 = X2[`1 7→ `2]

` attach `1 to `2 : H, `1〈X1〉, `2〈X2〉 ⇒ H′, `2〈X′1, X′2〉

attach-heap-noop

Γ ` attach ` to ` : H ⇒ H

attach

H; Γ ` e1 : `1 τ1 a H′; Γ′

H′; Γ′ ` e2 : `2 τ2 a H′′; Γ′′ Γ′′ ` attach `1 to `2 : H′′ ⇒ H′′′

H; Γ ` attach e1 to e2 : `2 τ1 a H′′′; Γ′′[`1 7→ `2]

Figure 4.11: attach, for unifying regions. The [· 7→ ·] syntax in this rule indicates
a variable renaming, and should not be confused for a tracked field.

Unlike focus and explore, attach has no inverse; there is no statically-safe

way to split a region into two without extra dynamic information.

To see how attach might be useful, consider the following example.

Example 4.4.4. Attempting non-isolated cross-region assignment.

Γ = x1 : ` ListNode, x2 : `′ ListNode H = `〈 〉, `′〈 〉, `′′〈 〉
x1.next = x2; //ERROR: non-isolated “x1.next” cannot cross regions.

This example attempts to set the next list node after x1 to be x2. But this

cannot be done: x1.next can only form references to the same region as x1,

while x2 lives in a different region. To perform this assignment requires

“forgetting” that x1 and x2 are in different regions—much as example 4.4.3

required “forgetting” that y and x1.payload lived in the same region.

This can be achieved by inserting an attach using the rules in figure

4.11. As before, we have chosen to split this out into a “typing” rule and

a “heap” rule. But unlike with focus and explore, the typing rule here
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does not serve only to expose the heap rule to the surface syntax; because

attach effectively relabels one region into another, our typing rule for

attach is able to perform that relabeling within Γ. This makes attach, in

a way, less costly to use than retract; the attach itself will not render

any variables (or fields) inaccessible. It will however complicate future

attempts at focus; once two regions are attached, the type contexts forget

the fact that objects formerly in one or the other cannot be aliases of each

other.

The rules of attach in figure 4.11 deserve a more careful look. The heap

rule attach-heap takes two regions `1 and `2 in which both `1 and `2 have

an arbitrary number of focused objects, and replaces them with a single

unified region `2 containing the focused objects of both original regions.

Additionally, it renames all instances of `1 to `2 anywhere they occur. Our

typing rule first extracts the regions from its two subexpressions, and

then uses the heap rule to unify those regions. It continues the process of

renaming started by the heap rule, replacing `1 with `2 wherever it occurs

in Γ.

This new attach construct fixes the example:

Example 4.4.5. Attempting non-isolated cross-region assignment.

Γ = x1 : ` ListNode, x2 : `′ ListNode H = `〈 〉, `′〈 〉
attach x2 to x1

Γ = x1 : ` ListNode, x2 : ` ListNode H = `〈 〉
x1.next = x2; //OK: variable reference and non-isolated field assignment
Γ = x1 : ` ListNode, x2 : ` ListNode H = `〈 〉

Where with focus and explore aliasing proved to be our Achilles’s Heel,

with attach our trouble is reachability. Objects within a single region may

by connected via non-isolated fields; objects in separate regions may

be connected only via isolated fields. Attaching two regions together is
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therefore always safe; but splitting a region in two is much more difficult.

To take a region and split it in two would require knowing that there are

only isolated references which cross the new divide. But we do not track

non-isolated references directly; indeed, that’s the entire point of having

regions in the first place. So we cannot easily account for non-isolated

references statically. A hybrid dynamic and static approach which allows

splitting regions can be found in section 4.9.

4.4.3 Review

This section introduces a small language of sequences, variables, field

access, and assignment. To type this language, we introduced the contexts

Γ, which binds variables, and H, which describes a reservation in terms

of regions. We introduced the ability to explicitly track objects within

regions in H; this allows the manipulation of fields of these tracked objects

with precise knowledge of the regions to which those fields pointed. Our

efforts here were aided by an invariant: any field or object not explicitly

tracked in H must be simple, meaning isolated fields refer to otherwise-

inaccessible regions not currently tracked in H. It is from this property

that the isolated keyword gets its name.

Recognizing the desire to introduce and remove objects from precise

tracking in H, we introduced the virtual commands focus, explore,

retract, and unfocus. These commands have no computational content;

they manipulate the representation of H, gaining or losing access to

isolated fields and variables in the process. Recognizing that one may

sometimes wish to connect non-isolated fields to objects in a different
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region, we introduced the attach command to unify regions and make

such assignments possible.

We proceed from here by expanding our language; first by adding

functions, and then by adding the remaining familiar control structures of

IMP.

4.5 adding functions

The previous section introduced a small language with objects and virtual

commands capable of reflecting the structure of these objects into our typing

environments H and Γ. It also included examples of non-simple structures

that could be created within this language. At the time, we mentioned that

there would be a cost to deviating from simplicity; that cost comes due

with functions.

Programming with regions and tracked references requires reasoning

about how the heap context H is changed during the execution of a func-

tion, and reasoning about the shape of regions provided to the function.

This fine-grained reasoning conflicts with our goal of keeping programmer-

facing complexity low; if we require programmers to annotate every func-

tion with the H required to call it and the H left after its execution, we

will have overshot the desired complexity of our language.

We need to keep things simple. Simple regions have no interesting

information tracked in H; if Γ contains only simple variables, then the

corresponding H is easy to generate. Even the names contained in H

are arbitrary; they exist only to group objects by region. So by limiting

function application to only simple objects, and ensuring that all results



224 a type system for isolation

returned from functions are themselves simple, we can avoid including

any representation of H in the function signature at all.

For the remainder of this section we consider only single-argument

functions with simple parameters. Focusing on single-argument functions

allows us to grapple with the challenge of managing regions through

abstraction without introducing peripheral complexity.

4.5.1 New Keywords for Function Definition

Section 4.2 introduced the example of a doubly-linked list each of whose

payload nodes lived in a separate region. We motivated this choice by

reasoning that one may wish to take an element of such a list and send it

to another thread, thus removing it from the reservation. This scenario is

illustrated in the following example:

Example 4.5.1. Sending away list contents.

Γ = x : ` ListNode H = `〈 〉
focus x

Γ = x : ` ListNode H = `〈x[ ]〉
explore x.payload

Γ = x : ` ListNode H = `〈x[payload 7→ `′]〉, `′〈 〉
send_to_thread(x.payload)

????

What should the state of Γ andH be after the execution of send_to_thread?

From its name we might guess that the send_to_thread function should

consume its argument, removing its region from H and producing this

output context:

Γ = x : ` ListNode H = `〈x[payload 7→ `′]〉
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And indeed, this is correct. But while we are free to make inferences

from the name of our functions, the type system is not. The language needs

new keywords that programmers can use to describe what effect function

application has on the state of H. Choosing to focus on functions which

take and return only a single simple argument vastly simplifies1 this task;

the only possible function behavior is to remove its arguments’ regions

from H, or to add its result’s regions to H. Effectively the only question is

whether the function’s result is in the same region as its argument, and

whether the function’s argument’s region is lost during the execution of

the function.

To accomplish this we introduce two new keywords: consumes and

preserves. Both these keywords decorate arguments; the consumes key-

word is applied to an argument whose region will not survive the function,

while the preserves keyword is applied to an argument whose region

will survive the function. Joining these keywords is a new use of the

isolated keyword. When the isolated keyword decorates a function’s

return type, then that function’s result lives in a separate region from its

arguments. Conversely, when the keyword does not appear on the function

return type, then the result of the function lives in the same region as its

arguments.

Consider the following examples. First, consider the send_to_thread

function called in example 4.5.1. Taking some liberties with the existence

of a void type, the function signature of send_to_thread would look like

this:

void send_to_thread(consumes T payload)

1 Pun intended.
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Meanwhile, a standard print function—which should definitely not be

damaging its arguments—would look like this:

void print(preserves T payload)

Branching out into functions which actually return something, the

identity function’s signature is:

T identity(preserves T t)

A clone function, which performs a deep copy of its argument, would

both preserve its argument and place its result in a new region:

isolated T clone(preserves T t)

We believe that these annotations are both clear and easy to use; if a

function does not intend to drop its argument from the current reservation,

then it should be annotated preserves. If a function would like the liberty

to drop its argument, then consumes is the correct annotation. If a function

knows that its result will live in an otherwise-unreachable region, then the

isolated keyword should be included; otherwise, it should be omitted.

4.5.2 Adding Single-Argument Functions

We now add functions with these annotations to our language. The syn-

tax for functions and function application in this extension can be found

in figure 4.12. Function names, represented by the metavariable fname,

are drawn from a reserved namespace. Much like variable names, we’ve
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p ::= qr τ fname(q τ x){e}; p | e
e ::= . . . | e(e) | fname
q ::= consumes | preserves
τ ::= . . . | (q τ → qr τ)

Figure 4.12: Function definition and application syntax for ref-IMP. The fname is
from a reserved set of identifiers which refer to functions.

chosen to make function names an expression of their own; this in turn

means function application takes an expression in both the function and

argument position. As discussed in subsection 4.5.1, function definitions in-

clude the new isolated, consumes, and preserves keywords; the isolated

keyword is optional on the return result, while exactly one of the consumes

or preserves keywords may appear on the function argument.

Semantically, we choose to represent our functions in a store-passing

(rather than substitution) style. Function application behaves as assignment

to the function parameter followed by a jump to its definition. Functions

jump back to their point of application on return. As before, we make this

choice to mirror the semantics of function application in Java, on which

Gallifrey is based.

4.5.3 Typing Rules for Functions

The discussion so far has focused on what effect functions have on regions—

whether they should consume or preserve their argument’s region, and in

what region their result should live. In our system, these are the interesting

questions of function application; beyond these questions, our treatment

of functions is a mild variation on the standard. We’ll now focus on the
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apply

H; Γ ` e f : ` f (q τ → qr τ′) a H′; Γ′

H′; Γ′ ` e : `eτ a H′′; Γ′′ Γ′′ ` (q `e → qr `) : H′′′ ⇒ Hout

H; Γ ` e f (e) : `τ a Hout; Γ′′

lookup

(fname : τ) ∈ F ` fresh
H; Γ ` fname : ` τ a Γ;H, `〈 〉

define

fname : (q τ → qr τ′) ∈ F
`〈 〉; x : ` τ ` e : `′ τ′ a H f 1,H f2 ; Γ′f · ` (q `→ qr `

′′) : `〈 〉 ⇒ H f 1

` qr τ′ fname(q τ x){e}

Figure 4.13: Function application and definition typing rules, written with re-
liance on the heap rules in figure 4.14.

typing components of the function rules, written with a reliance on the

heap rules in figure 4.14 which is discussed later. The typing rules for

functions can be found in 4.13.

We first discuss application. Recall that the form of application for this

language has an expression in the function position; the application rule

therefore first needs to check this expression and ensure it is a function.

With the information from this function type, the rule ensures its argu-

ment’s type matches the function’s declared argument type, and the result

of the application expression itself has the function’s specified return

type, as is standard. We have moved the interesting questions of function

application—the effect on regions— to a heap rule, the third premise of

apply.

Taking advantage of the simplicity of function arguments, the function

definition rule first constructs a typing context Γ = x : ` τ;H = `〈 〉 which

contains a single variable x inside a simple region. As is standard, it then

checks that the result type of the function body matches the declared
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return type. Syntactically, functions are defined outside of an expression

context, and have a name (fname) drawn from a fixed list of function

name symbols. We also assume the existence of a global environment F ,

which maps fnames to types. The function definition rule also ensures that

functions have a name and type consistent with an entry in F . It relies on

heap rules to determine which region the function result should live in.

The lookup rule handles the use of an fname as an expression. This

rule consults F to determine the function type associated with fname, and

creates a new simple region in which the function value will live. This

creation of a new region may seem surprising; it semantically implies that

the function object will be copied every time an fname expression appears.

This is however a polite fiction; as function objects have no state, they are

effectively never lost from the reservation and so this implied copy can be

safely elided at runtime.

4.5.4 Heap Rules for Functions

Most of the interesting questions about functions—how they affect

regions—have been deferred to the heap rules. The first interesting thing

to note is that both the definition and application rule from figure 4.13

use the same heap judgment to determine the correct region for the function

result. This judgment describes how the heap should change after apply-

ing a function, based largely on the keywords on the function’s return

and arguments. In its use in application, this rule describes the maximum

assumptions that the application context can make about the output label

and output heap context. In its use in definition, this rule describes the
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cmd ::= . . . | consumes ` | preserves `

consumes

Γ ` consumes ` : H, `〈〉 ⇒ H
preserves

Γ ` preserves ` : H, `〈〉 ⇒ H, `〈〉
preserve-isolated-func

Γ ` q ` : H ⇒ H′ `′ /∈ region-names(Γ,H′)
Γ ` (q `→ isolated `′) : H ⇒ H′, `′〈 〉

consume-func

Γ ` (consumes `→ isolated `′) : H ⇒ H′

Γ ` (consumes `→ · `′) : H ⇒ H′

preserve-simple-func

Γ ` preserves ` : H ⇒ H
Γ ` (preserves `→ · `) : H ⇒ H

Figure 4.14: Function heap syntax and rules, with cases explicitly enumerated as
separate rules. The region-names function produces a set of all region
names mentioned by its arguments.

constraints to which the function definition must adhere. The rules for this

judgment are found in figure 4.14.

Figure 4.14’s five inference rules are an explicit casing of the keyword

combinations that may appear on functions, and are best considered in two

groups: the “argument” rules and the “execution” rules. The first two rules,

consumes and preserves, describe how argument keywords affect the

heap. Both rules require that the region in question is present and simple;

the consumes rule removes this region from the output heap context,

while the preserves rule leaves the output heap context unmodified.

The next three rules are the “execution” rules: these describe the result

of function execution directly, using the argument rules in their premise.

These rules are just an explicit casing of the possible keyword combinations

in single-argument functions. Two rules concern functions which return

an unannotated result, and one rule handles functions which produce



4.5 adding functions 231

an isolated result. Interestingly the consume-func rule, which handles

functions that consume their input region without producing an isolated

result defers directly to the preserve-isolated-result rule; in a single

argument function, the output of a consumes function is always unrelated

to it input as its input no longer exists by the function’s end.

We now turn to the use of these heap rules in function application

and definition. The strictest case is for functions which preserve their

argument and produce an isolated result. At application time, the heap

rules assume that the result lives in a new region, and so the definition

must be checked under the same assumption. When defining this function,

after the body executes there must exist two live regions: one in which the

argument lives, and one in which the return result lives.

Next we turn to functions which preserve their argument and return

a non-isolated result. Here the heap rule ensures that the argument’s

region is contained within the heap context, and that the result will live in

the argument’s region. This is conservative. As functions are opaque, the

application rule must assume that the returned result is arbitrarily related

to the argument. Function definition makes this same assumption; as all

regions may be merged via attach, this choice does not result in a loss of

expressivity.

We now discuss functions which consume their argument. Interestingly,

one can always treat these functions as though they return an isolated

result! This is because the function’s signature guarantees that the region

of its argument will not survive function application. On application, this

means that any variables bound to the argument’s region will become

unusable, and that the function result will live in a new region. Function

definition technically does not require anything in particular; the function
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result needs to live in a region mentioned in neither an empty Γ nor an

empty H, and thus can be in any region.

4.5.5 A Cavalcade of Examples

To build intuition into how the function rules work in practice, we now

present several examples of function definition and uses.

Example 4.5.2. Sending away list contents.

Γ = x : ` ListNode H = `〈 〉
focus x

Γ = x : ` ListNode H = `〈x[ ]〉
explore x.payload

Γ = x : ` ListNode H = `〈x[payload 7→ `′]〉, `′〈 〉
send_to_thread(x.payload) //send_to_thread : (consumes T→ void)
Γ = x : ` ListNode H = `〈x[payload 7→ `′]〉

To start, we revisit the example from the beginning of this section.

Initially, a single ListNode x lives in a simple region. Focus and explore

introduces a new region `′ in which x.payload lives. According to its

type, send_to_thread consumes its argument and produces void. The

application typing rule states that applying send_to_thread causes the

argument’s region—`′—to be removed from H. As a result of this, the

list is no longer simple; we will be unable to retract away the tracked

payload field, and will thus be unable to return the list from a function or

pass it into some other function—at least until its simplicity is restored.

Example 4.5.3. Calling a clone.

Γ = x : ` ListNode, y : ` ListNode H = `〈 〉
y = clone(x) //clone : (preserves T→ isolated T)
Γ = x : ` ListNode, y : `′ ListNode H = `〈 〉, `′〈 〉
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This is an example of a function which returns an isolated result. As a

result of its execution, H gains a new region containing the result of clone.

As clone preserves its arguments, x’s region also stays in H.

Example 4.5.4. Defining identity.

T identity(preserves T o){

Γ = o : ` T H = `〈 〉
o

Γ = o : ` T H = `〈 〉
}

This is a simple example of function definition: the identity function. The

function definition rule states that functions begin with their parameter

bound in a simple region; further, functions which preserve their region

must ensure that it is simple at the end of function execution, as it is here.

This function returns a non-isolated result; this result must therefore live

in the same region as its argument (which it does).

Example 4.5.5. Cloning contents of a list.

isolated T get_head(preserves ListNode ln){

Γ = ln : ` ListNode H = `〈 〉
focus ln

Γ = ln : ` ListNode H = `〈ln[ ]〉
explore ln.payload

Γ = ln : ` ListNode H = `〈ln[payload 7→ `′]〉, `′〈 〉
ret = clone(ln.payload) //clone : (preserves T→ isolated T)

Γ = ln : ` ListNode, ret : `′′ T H = `〈ln[payload 7→ `′]〉, `′〈 〉, `′′〈 〉
retract ln.payload

Γ = ln : ` ListNode, ret = `′′〈 〉 H = `〈ln[ ]〉, `′′〈 〉
unfocus ln

Γ = ln : ` ListNode, ret = `′′〈 〉 H = `〈 〉, `′′〈 〉
ret OK: argument region and return region simple.

}

This is a more interesting function. It assumes the existence of variable

definition, rules for which are introduced in the next section in figure 4.16.
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As before, focus and explore gains access to ln.payload in region `′. The

type of clone is (preserves T→ isolated T); according to the application

rule, the argument’s region persists after the clone and a new region is

introduced to contain the clone’s result. The example cannot just stop at

the point of the clone, however, because that would violate simplicity. This

function preserves its input, promising that the input region will exist at

the end of the function, and that it will be simple at that point. So the result

of clone must be stored into a temporary variable, followed by a retract

and unfocus to restore simplicity. In practice these virtual commands can

be inferred.

Example 4.5.6. Using get_head.

Γ = x : ` ListNode, y : ` T H = `〈 〉
y = get_head(x) // get_head : (preserves ListNode→ isolated T)
Γ = x : ` ListNode, y : `′ T H = `〈 〉, `′〈 〉

All the virtual commands required to clone the payload of the list

element away are encapsulated within get_head; using it is now only a

matter of ensuring the simplicity of its argument. What if one wanted to

remove the payload from the list node instead?
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Example 4.5.7. Negative example: take_head.

isolated T take_head(preserves ListNode ln){

Γ = ln : ` ListNode H = `〈 〉
focus ln

Γ = ln : ` ListNode H = `〈ln[ ]〉
explore ln.payload

Γ = ln : ` ListNode H = `〈ln[payload 7→ `′]〉, `′〈 〉
ln.payload

Γ = ln : ` ListNode H = `〈ln[payload 7→ `′]〉, `′〈 〉
ERROR: preserved region is non-simple
}

Example 4.5.7 attempts this, but it does not typecheck; at the end of this

function body, its argument’s region is not simple. Since example 4.5.7

preserves its argument’s region, It must be simple when the function

ends.

Example 4.5.8. Negative example: take_head, try 2.

isolated T take_head(preserves ListNode ln){

Γ = ln : ` ListNode H = `〈 〉
focus ln

Γ = ln : ` ListNode H = `〈ln[ ]〉
explore ln.payload

Γ = ln : ` ListNode H = `〈ln[payload 7→ `′]〉, `′〈 〉
ret = ln.payload

Γ = ln : ` ListNode, ret = `′〈 〉 H = `〈ln[payload 7→ `′]〉, `′〈 〉
retract ln.payload

Γ = ln : ` ListNode, ret = `′〈 〉 H = `〈ln[ ]〉
unfocus ln

Γ = ln : ` ListNode, ret = `′〈 〉 H = `〈 〉
ret

ERROR: return expression region not in H
}

Unfortunately, naively following the same pattern as get_head will not

work here; retracting ln.payload renders the ret variable inaccessible,

preventing the function from returning it.
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There is in fact no way to make this function work with a preserves ar-

gument and isolated result. A preserves → isolated function declares

that its parameter and return result are disconnected; in the case of a list

node and its payload field, they manifestly are connected. One could try

removing the isolated result, declaring that the return result and argument

live in the same region.

Example 4.5.9. Negative example: take_head, try 3.

isolated T take_head(preserves ListNode ln){

Γ = ln : ` ListNode H = `〈 〉
focus ln

Γ = ln : ` ListNode H = `〈ln[ ]〉
explore ln.payload

Γ = ln : ` ListNode H = `〈ln[payload 7→ `′]〉, `′〈 〉
ret = ln.payload

attach ret to ln //necessary: ret and ln must be in the same region
Γ = ln : ` ListNode, ret = `〈 〉 H = `〈ln[payload 7→ `]〉
retract ln.payload

Error: ` is not an empty region.
}

But this does not help. To write a function which preserves its input

and returns a non-isolated result requires that the result of the function

live in the same region as its argument. For this example, that means

ln must live in the same region as ln.payload. This is a violation of

simplicity; ln.payload is an isolated field, and isolated self-references

are not simple. Delaying the point of attach later is impossible, because

the moment the payload is retracted ret becomes inaccessible.
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Example 4.5.10. Positive example: take_head, take 4.

isolated T take_head(consumes ListNode ln){

Γ = ln : ` ListNode H = `〈 〉
focus ln

Γ = ln : ` ListNode H = `〈ln[ ]〉
explore ln.payload

Γ = ln : ` ListNode H = `〈ln[payload 7→ `′]〉, `′〈 〉
ln.payload

Γ = ln : ` ListNode H = `〈ln[payload 7→ `′]〉, `′〈 〉
OK: argument region discarded, result region simple
}

The only way to make this example work is to have the function consume

its argument. Now the function no longer needs to ensure that its argu-

ment’s region is simple, though it still must ensure that the result’s region

is simple. This is a heavy price to pay; in returning the payload of the list

node, we have lost access to the entire rest of the list.

4.6 fleshing out the language : adding imp

With functions and structures in place, we have addressed the meat of our

language. But to make it a realistic language we still have more to add; as

a bare minimum, we will introduce the familiar constructs of IMP, gaining

a way to declare variables, branch on conditionals, and loop.

4.6.1 Syntax and Semantics of IMP

The syntax of IMP, can be found in figure 4.15. Sticking with our Java-like

target semantics, our IMP deviates from normal IMP slightly:
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Figure 4.15: The syntax of IMP.

e ::= . . . | if (e) {e} else {e} | while (e) {e} | e⊕ e
| declare x : τ in {e} | n | true | false

⊕ ::= ; | + | ∗ | − | && | ||
τ ::= . . . | int | bool | void

• We have chosen not to separate statements and expressions. As

commonly accompanies this choice, we’ll have conditionals and

sequences return the result of their last-executed subexpression, and

we’ll have while-loops explicitly return void.

• We have chosen to have explicit variable declarations with lexical

scope.

• Our variable declarations are not initialized, and must be assigned

to before use.

The features we include from IMP are otherwise straightforward.

4.6.2 Typing Rules for IMP

The additional typing rules we require for IMP can be found in figure 4.16.

The conditional and while rules are, as always, the most interesting rules

here. A conditional branch or loop body may modify its heap context (for

example by assignment to an isolated field ) or modify its typing context

(for example by assigning a variable to an object from a different region). In

the case of the conditional, such modifications to our environment can only

be kept if an equivalent modification occurred in the other branch. For the
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constant

` fresh
H; Γ ` n : ` int a H, `〈 〉; Γ

bool-constant

b ∈ {true, false} ` fresh
H; Γ ` b : ` bool a H, `〈 〉; Γ

declare

x /∈ Γ x /∈ F
H; Γ, x : ⊥ τ ` e : ` τ′ a H′; x : `′τ, Γ′

H; Γ ` declare x : τ in{e} : ` τ′ a H′; Γ′

infix

H; Γ ` e1 : ` τ a H′; Γ′ H′; Γ′ ` e2 : ` τ a H′′; Γ′′ ` τ ⊕ τ

H; Γ ` e1 ⊕ e2 : ` τ a H′′; Γ′′

conditional

H; Γ ` e1 : `b bool a H′; Γ′

H′; Γ′ ` e2 : `lτ a Hl ,H2; Γl , Γ2 H′; Γ′ ` e3 : `rτ a Hr,H3; Γr, Γ3
Hl ; Γl ≡m Hr; Γr m(`l) = `r vars(Γ) = vars(Γl)

H; Γ ` if(e1) {e2} else {e3} : `l τ a Hl ; Γl

while

H; Γ ` e1 : `b bool a H′; Γ′

H′; Γ′ ` e2 : ` τ a Hl ,H2; Γl , Γ2 H′; Γ′ ≡m Hl ; Γl

H; Γ ` while(e1) {e2} : ⊥ void a H′; Γ′

Figure 4.16: Typing rules for ref-IMP.
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loop, such modifications can only be kept if the resulting environments are

equivalent to the loop’s initial environments. This equivalence is decided

by the ≡m equivalence relation, defined in figure 4.17. This equivalence

relation relates two environment pairs which differ only in the precise

names chosen for their regions. This captures the fact that our region labels

are just arbitrary symbols; the names were initially chosen arbitrarily, and

so renaming regions is harmless so long as the new labeling does not

change the structure of H or the validity of variables in Γ. It’s important to

note here that the m subscript is not a marker; it’s the actual function used

to rename the left-hand side into the right-hand side. The conditional

rule takes advantage of this, ensuring that the labels on the result of

both branches are equivalent under the same m used to determine the

branches’ environment equivalence. Of final note, both the while and

conditional rules discard any parts of the environment that are not

equivalent, partitioning them into environments which do not propagate

to the rule’s output, so long as all variable bindings from the input Γ are

preserved.

The remaining rules are mostly straightforward; of note is that constants

get a new region at each use, and the behavior of the declare rule.

The declare rule does not initialize the declared variable to a particular

expression; we capture this lack of initialization by setting its region label

to ⊥, the inaccessible region. Assignment overwrites this with a real region,

following the assignment rule introduced in section 4.3.
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region-α-equivalence

m = (`1 7→ `′1, . . . , `n 7→ `′n) is a bijection from regions(H) to regions(H’)
H = `〈x[ f 7→ `′′, . . .], . . .〉, . . .

H, Γ ≡m m(`)〈x[ f 7→ m(`′′), . . .], . . .〉, . . . ; {x : m(`)τ | x : `τ ∈ Γ}

Figure 4.17: Environment equivalence for ref-IMP.

v ::= l | constant
e ::= . . . | v

Figure 4.18: New syntax for values and locations.

4.7 a dynamic semantics

We now introduce a formal dynamic semantics of the language.

4.7.1 Adding Locations

The language requires a few additions to support a small-step seman-

tics and the accompanying progress and preservation proofs. First, we

explicitly identify a set of irreducible values v, including a new location

expression l (figure 4.18). We need to introduce locations because we’re

(l : `τ) ∈ P

location-reference

P, l : ` τ ` l : ` τ

locations

P ` l : ` τ H ` `

H; Γ; P ` l : ` τ a H; Γ

Figure 4.19: A typing rule for locations.
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modeling a Java-like semantics where aliasing is important; in our lan-

guage, all variables contain references and the expression x = y means

“set x to the same reference as y”. The small-step semantics steps the

expression x = y to some expression x = l; so we’ll need an expression

form for these l, as well as a typing rule for them.

Locations can never appear in the surface syntax of a program, and will

only arise as the result of some step in a small-step evaluation. This in

turn means that the existing typing contexts have no way to type locations;

introducing a typing rule for locations requires also introducing a new

store typing environment holding locations’ types. This environment is P;

its form and new typing rules using it can be found in figure 4.19.

We’ll also need to thread P through the rest of the typing rules, passing

it recursively to subexpressions as they are visited in each rule’s premises.

This modification is reflected in the full system found in the appendix;

we choose not to extract it and highlight it here. One aspect of P that is

perhaps odd at first glance is that it, unlike Γ and H, never appears on the

output of a typing rule and is never modified by any typing rule. This is

an artifact of how we have phrased progress and preservation; we will not

need to adjust the mapping from locations to regions or types.

4.7.2 Communication

To model gaining and losing objects from the reservations, we will intro-

duce abstract communication primitives send and receive. The extended

syntax and typing rules for them can be found in figure 4.20. We leave

abstract the destination to which send sends and from which receive



4.7 a dynamic semantics 243

e ::= . . . | send-τ | receive-τ

H; Γ; P ` send-τ : (consumes τ → void) a Γ;H

H; Γ; P ` receive-τ : (void→ isolated τ) a Γ;H

Figure 4.20: Send and receive communication primitives.

Rd : 2l

π : l ⇀ o
o : (τ, v)
σ : x ⇀ l

Figure 4.21: Definitions for our smallstep configuration elements.

receives; we mean only for these to stand in for arbitrary communication,

and to model their effect on the reservation. We assume there is a pair of

send and receive functions for each type.

4.7.3 Small Steps

Recall from section 4.2 that our purpose is to prove reservation safety:

that, given a set of objects which a context may access, evaluation only

ever accesses objects in that set. We choose to present a single-threaded

dynamic semantics in which reservations are explicitly tracked, and prove

that no thread accesses memory outside their reservation. This core result

can then be used to prove memory safety (where reservations represent

allocated memory), thread safety (where each thread has a reservation

and no reservation may overlap), or plain isolation as needed.
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E ::= [·] | E⊕ e | l ⊕ E | E; e | l; E | if (E) {e} else {e}
| while (E) {e} | x = E | E(e) | l(E) | E. f
| send E | receive E | attach E e | attach l E
| focus E | unfocus E | explore E | retract E

(Rd, π, σ, e) eval−−→ (R′d, π′, σ′, e′)

(Rd, π, σ, E[e]) eval−−→ (R′d, π′, σ′, E[e′])

Figure 4.22: evaluation contexts for our language.

The small-step semantics for our language is in figure 4.23, with con-

figurations defined in figure 4.21 and evaluation contexts in 4.22. Our

semantics is presented as a relation eval−−→ between two configurations.

Configurations are a 4-tuple of the form (Rd, π, σ, e), where Rd, a set of

locations, represents the reservation, π, a partial function from locations to

objects, represents the heap, σ, a partial function from variables to locations,

represents the stack, and e remains an expression. One immediate thing to

note here is that π represents the entire heap, not just the portion contained

within the reservation; π restricted to keys in Rd is the set of available

objects.

The idea behind this small-step semantics is that whenever stepping

e would require looking at a specific location, we first check Rd to make

sure that location is in the dynamic reservation. If it is, evaluation can step.

If not, then evaluation gets stuck. Using this, we can reduce the proof of

reservation safety to a proof of progress and preservation.

There are a few elements of this small-step semantics (beyond the pres-

ence of the reservation Rd) that are not quite standard. These are done
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π ` l ↪→ l
π(l) = (τ, v) v[ f ] = l′

π ` l ↪→ l′
π ` l ↪→ l′ π ` l′ ↪→ l′′

π ` l ↪→ l′′

σ(x) ∈ Rd

(Rd, π, σ, x) eval−−→ (Rd, π, σ, σ(x))

l fresh

(Rd, π, σ, constant) eval−−→ (Rd ∪ {l}, π[l 7→ (typeo f (constant), constant)], σ, l)

ll , lr ∈ Rd π(ll) = ol

(Rd, π, σ, ll ; lr)
eval−−→ (Rd, π, σ, lr)

ll , lr ∈ Rd π(ll) = ol π(lr) = or

(Rd, π, σ, ll ⊕ lr)
eval−−→ (Rd, π, σ, [[⊕]](ol , or))

l ∈ Rd π(l) = true

(Rd, π, σ, if(l){e} else {ei})
eval−−→ (Rd, π, σ, e)

l ∈ Rd π(l) = false

(Rd, π, σ, if(l){ei} else {e})
eval−−→ (Rd, π, σ, e)

(Rd, π, σ, while (e1) {e2})
eval−−→ (Rd, π, σ, if(e1) {e2; while (e1) {e2}})

(Rd, π, σ, declare x : τ in e) eval−−→ (Rd, π, σ, e) (Rd, π, σ, x = l) eval−−→ (Rd, π, σ[x 7→ l], l)

l f ∈ Rd π(l f ) = (τf , v f ) Fd(v f ) = λx.e e ≡α e′ FV(e′) = {x′} x′ fresh

(Rd, π, σ, l f (l))
eval−−→ (Rd, π, σ, {x′ = l; e′})

dom(π′) = R′d ` π′ π′(l) = (τ, v) ∀l′ ∈ dom(π′). π′ ` l ↪→ l′

(Rd ] R′d, π ] π′, σ, send τ(l)) eval−−→ (Rd, π ] π′, σ, l)

dom(π′) ∩ Rd = ∅ ` π′ π′(l) = (τ, v) ∀l′ ∈ dom(π′). π′ ` l ↪→ l′

(Rd, π ] π′, σ, receive τ())
eval−−→ (Rd ∪ dom(π′), π ] π′, σ, l)

l ∈ Rd π(l) = (τ, v) v[ f ] = l2

(Rd, π, σ, l. f ) eval−−→ (Rd, π, σ, l2)

l ∈ Rd π(l) = (τ, v) qr f ∈ fields(τ)

(Rd, π, σ, l. f = l2)
eval−−→ (Rd, π[l 7→ (τ, v[ f 7→ l2])], σ, l2)

cmd ∈ {attach l li, focus l, unfocus l, explore l, retract l}

(Rd, π, σ, cmd) eval−−→ (Rd, π, σ, l)

[[+]]((int, n1), (int, n2)) , n1 + n2

[[∗]]((int, n1), (int, n2)) , n1 ∗ n2

[[−]]((int, n1), (int, n2)) , n1 − n2

Figure 4.23: A small-step semantics for ref-IMP + functions + structures.
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to streamline the presentation. The first is that all expressions evaluate

to a location; even constants, which are placed in the heap at a freshly-

generated location. Because of this choice, evaluation contexts (figure 4.22)

also step expressions until they reach locations, and conditional and loop-

ing constructs take locations as their condition, explicitly looking up the

value at that location as part of stepping into the condition or loop’s body.

Declarations are effectively ignored; as we’ve made it a static requirement

to avoid shadowing, have no closures, and require an assignment before

reading a variable, we can bind variables to locations on assignment and

directly read them on access without reasoning about scope. Correspond-

ingly, we’ve chosen to implement function application as an α-rename of

the function’s free variable followed by an assignment to that variable and

the execution of the function body.

Finally our send and receive execution here is of note. The send rule

says that sending a location causes all objects reachable from that location

to be removed from the reservation. The premise ` π, defined in figure

4.24, says that π is sane—all fields point to objects of the fields’ type, and

there are no dangling references. The premise π ` l ↪→ l′ says that l′ is

reachable from l in π. Taken together, they mean that π is the complete

object graph for some l, and contains no extraneous elements. The receive

rule functions similarly, except here the object graph to receive is not

bound by the syntax, but rather can be arbitrary.
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4.8 correctness

With the introduction of our dynamic semantics, we’ll be able to prove

reservation safety—the property that a step of execution only accesses

objects within its reservation—via a standard progress and preservation

proof. This is because our dynamic semantics “gets stuck” when it would

need to access memory outside of its reservation; therefore if the semantics

never “gets stuck”, it never attempts such an access. But before we can

state progress and preservation, we will need a good number of auxiliary

definitions and to formalize several “intuitive” properties of our typing

contexts.

4.8.1 Store Typing

Proving progress and preservation requires a typing on configurations:

we need some way to say ` (Rd, π, σ, e). This in turn requires a typing

on stores—some way of saying that the static H;Γ;P corresponds to the

dynamic π, σ. This gets a bit complicated because the division of roles

among π and σ is not directly mirrored by H, Γ, and P. To begin with,

regions actually aren’t directly represented in π and σ at all; regions are

a purely static abstraction, used to group objects whose non-isolated

fields refer to each other. Static contexts, however, link to each other using

regions; for example, Γ maps variables (tracked in σ) to types (tracked in

π), and regions (tracked in P). In this subsection, we introduce definitions

describing what it means for each static environment to correctly describe

the heap and stack.
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∀l ∈ dom(π), τ, v s.t. l = (τ, v): ∀ f , l′ s.t. v[ f ] = l′:
∃qr, τf , v f s.t. qr f τf ∈ fields(τ) ∧ π(l′) = (τf , v f )

` π

Figure 4.24: A well-formedness condition on π: objects’ fields refer to other extant
objects of the correct type.

π(l) = (τ, v) qr f ∈ fields(τ) v[ f ] = l′

π ` l[ f ] = l′

∀l : (l ∈ dom(π))⇒ ∃`, τ, v: (P ` l : ` τ) ∧ (π(l) = (τ, v))
∀l, l′, f : (π ` l[ f ] = l′)⇒ ∃`, τ, τ′ : P ` l : ` τ ∧ ((P ` l′ : ` τ′) ∨ (isolated f : τ′ ∈ fields(τ)))

` π : P

Figure 4.25: P corresponds to π when all objects in π are mapped in P, and where
only isolated references connect objects in distinct regions.

4.8.1.1 A sane heap

The first correspondences we will consider relate to the accurate mapping

of objects in π. To begin, we need a sanity condition on π itself; we only

want to consider πs where all fields map to objects of the appropriate type,

and where no fields contain dangling pointers. This is expressed in 4.24.

The first environment typing will govern the correspondence between π

and P, found in figure 4.25. Because P will only ever be generated directly

from π in the process of proving progress and preservation, we can afford

to make its correspondence with π very tight; in fact we require that all

keys in π are given a label and type in P, and that this type matches the

type found in π. This is also where one of the key region invariants is

expressed: Only isolated references may connect objects in distinct regions.
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∀l, τ s.t. P ` l : ` τ: π; P ` l simple ` π : P
π; P ` ` simple

π(l) = (τ, v) isolated f ∈ τ
P ` l : ` τ P ` v[ f ] : `′ τ′ ` 6= `′ π; P ` `′ dominated

π; P ` `′ simple π; P ` `′ no-cycles ` π : P
π; P ` l. f simple

π(l) = (τ, v) · f ∈ τ

π; P ` l. f simple

π( f ) = (τ, v) ∀qr f ∈ fields(τ): π; P ` l. f simple

π; P ` l simple

Figure 4.26: Simplicity captures the idea of a forest; all isolated references from
a simple object dominate their region, and the regions reachable
from simple objects form a tree ordered by isolated references. All
regions reachable from a simple objects’ isolated references must
themselves be simple.

We say that any label-typing which adheres to these properties correctly

types π.

4.8.1.2 Simple regions, objects, and fields

The section on objects relies heavily on the intuition that a simple region is

one whose region graph forms a forest. This idea is captured in figure 4.26.

We’ll rely on this when formalizing the simplicity invariant on H: that all

objects, regions, and fields which aren’t explicitly tracked in H must be

simple.

Included in the notion of simplicity is the idea that a simple isolated

reference should dominate its reachable object graph.

Definition 4.8.1 (Domination). π;P ` ` dominated if:
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∀l1, l2, l3, l4 where :

P ` l1 : `1τ1 for some τ1 and `1 6= `

∧P ` l2 : `τ2 for some τ2

∧P ` l3 : `3τ3 for some τ3 and `3 6= `

∧P ` l4 : `τ4 for some τ4

∧π ` l1[ f1] = l2 for some f1

∧π ` l3[ f3] = l4 for some f3

Then l1 = l3 ∧ f1 = f3.

This definition states that if there are any two external objects which

refer to objects in some region, then those two external objects must be

the same, and the field by which they refer to their target must also be the

same. This expresses the property that there is at most one reference from

outside the region into it.

Simplicity also requires that we reason about the absence of cycles in

the region graph; this is captured by the following definition (which relies

on on a definition of “region reachability” in figure 4.27):

Definition 4.8.2 (Cycle-free).

π; P ` ` no-cycles if ∀l, l′, `, `′, τ, τ′ where

P ` l : ` τ ∧ P ` l′ : `′ τ′ ∧ P; π ` l -> l′ :

(P; π ` l′ -> l)⇒ (` = `′)
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π(l) = (τ, v) P ` l : ` τ

P; π ` l : ` τ

P; π ` l : ` τ P; π ` l′ : ` τ′

P; π ` l ->l′

P; π ` l : ` τ P; π ` l′ : `′ τ′

π(l) = (τ, v) v[ f ] = l′ isolated f : τ′ ∈ fields(τ)
P; π ` l ->l′

P; π ` l->l′ P; π ` l′->l′′

P; π ` l->l′′

Figure 4.27: Definition of region reachability, which is reachability where all
objects are reachable from all other objects in the same region.

σ(x) = l P ` l : ` τ
π(l) = (τ, v) ∀ f 7→ `′ ∈ F: ( f ∈ fields(τ)) ∧ P ` v[ f ] : `′

∀ f ∈ (fields(τ)− fields(F)): π; P ` v[ f ] simple
∀l′ 6= l: (P ` l′ : ` τ′)⇒ (π; P ` l′ simple) σ, P ` π : H ` π : P

σ, P ` π : `〈x[F]〉,H

∀l: (P ` l : ` τ)⇒ (π; P ` l simple) σ, P ` π : H ` π : P
σ, P ` π : `〈〉,H

Figure 4.28: Correspondence between π, P and H, showing that all objects, re-
gions, and fields not explicitly tracked in H must be simple.
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` π : P
P ` (π, σ) : ·

` π : P ` (π, σ) : Γ P ` σ(x) : ` τ

P ` (π, σ) : (x : ` τ, Γ)

Figure 4.29: Demonstrating that Γ accurately represents σ and π.

4.8.1.3 Simplicity in H

In figure 4.28 we see the payoff of our work defining simplicity: the sim-

plicity invariant stated formally. Here we rely on the exact correspondence

between π and P quite heavily; while we phrase this property as H cor-

responding to π under σ and P, we in practice rely more on P than on π.

This recursive definition ensures three things. First, all objects in a region

which aren’t tracked are simple. Second, all untracked fields of tracked

objects are simple. Finally, all tracked fields of tracked objects refer to the

same region in P as they do in H.

4.8.1.4 Γ corresponds to σ and π

Our last separate judgment form, found in figure 4.29, demonstrates

that Γ accurately reflects the dynamic store: that it maps objects to types

and regions consistent with σ and π. In this rule we once again rely on

the direct correspondence between π and P, using the P ` l judgment

exclusively to reason about the type of a location.

4.8.1.5 Putting it all together

With the independent definitions of correspondence, we can now finally

define what it means for a dynamic heap and stack to be represented by Γ,

H, and P. This is found in figure 4.30.
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` π ` H; Γ ` π : P P ` (π, σ) : Γ σ, P ` π : H
` π, σ : H; Γ; P

Figure 4.30: Our store typing.

∀` s.t. H ` ` . ∀l, τ s.t. P ` l : ` τ . l ∈ Rd ` π : P Rd ⊆ dom(π)

π; P ` Rd : H

Figure 4.31: Our static reservation models our dynamic reservation.

4.8.2 Approximating Dynamic Reservations

We next ensure that the dynamic reservation Rd is correctly modeled by

H. This condition, found in figure 4.31, effectively states that all objects in

a region permitted by H must be available in the reservation Rd. Note that

H need not precisely correspond with Rd; it is acceptable to have extra

statically inaccessible locations. In this definition we again rely on the

precision of P; here, it is essential that all locations are mapped in P lest

we miss some inaccessible members of an otherwise-accessible region.

4.8.3 Putting it all Together: Configuration Typing

With these components we can finally state what it means for a con-

figuration to be well-typed, found in figure 4.32. As is standard for a

configuration-based small-step semantics, we say that the configuration

is well-typed if its expression is well-typed under a static typing envi-

ronment corresponding to its dynamic store. This is in turn well-typed if

the heap and stack are typed at H;Γ;P, and if the static reservation in H
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` π, σ : H; Γ; P π; P ` Rd : H
` (Rd, π, σ) : (H; Γ; P)

` (Rd, π, σ) : (H; Γ; P) H; Γ; P ` e a Γ′;H′

` (Rd, π, σ, e)

Figure 4.32: Definition of a well-typed configuration.

accurately models the dynamic reservation Rd for this particular heap and

heap typing.

4.8.4 Progress and Preservation

We are now, finally, able to state progress and preservation. Preservation is

where the invariants are hiding; in order to ensure an expression remains

typeable after taking a step, we must ensure that this step preserves

the invariants required by our static environments. Progress is where

reservation safety is hiding; as we have written a dynamic semantics which

cannot take a step that would violate its reservation, proving that our type

system guarantees progress in turn ensures that the typed program cannot

race.

Theorem 4.1 (Progress). For any (Rd, π, σ, e) where e is not a value, if `

(Rd, π, σ, e) then there exists some (R′d, π′, σ′, e′) such that (Rd, π, σ, e) eval−−→

(R′d, π′, σ′, e′)

Theorem 4.2 (Preservation). For any (Rd, π, σ, e), if ` (Rd, π, σ, e) and

there exists some (R′d, π′, σ′, e′) where (Rd, π, σ, e) eval−−→ (R′d, π′, σ′, e′) then

` (R′d, π′, σ′, e′)
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detach

H; Γ; P ` e : ` τ a H′; Γ′ Γ′ ` retract ` : H′ ⇒ H′′ `′ fresh
H; Γ; P ` detach e : `′ τ a H′′, `′〈 〉; Γ′

Figure 4.33: Typing rules for detach.

Note that these theorems have not been through a rigorous syntactic

proof.

4.9 extension : detach

Among the virtual commands, the attach command stands out: it has no

natural inverse. This is because attach “forgets” that the objects previously

contained in the attaching region are disconnected from those in the

attached region. If we can recover that information, then it is possible to

support a detach operation, which takes its argument and moves it into a

newly-allocated region.

Typing rules for this proposed detach can be found in figure 4.33. We

limit uses of detach to objects in regions reachable from some isolated

field; when an object is detached, we effectively retract the detach tar-

get’s region back into this isolated field. Unlike a normal retract, how-

ever, we preserve access to the target of the detach, placing it in its own

newly-allocated region. For this operation to be sound, we must ensure

that the object graph associated with the newly-detached object and the

object graph reachable from the retracted isolated field are disjoint. Thus,

the detach command also must have a runtime component: detach en-

sures dynamically that the object graph reachable from its target does not
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intersect with the object graph reachable from the retracted field. If this

check fails, the program panics.2

While this dynamic check is potentially expensive, we have identified

two approaches which should significantly curtail runtime costs. The first

option is to piggy back on the graph maintained by the garbage collec-

tor; enhancing the garbage collection routine to maintain state accessible

to detach will hide much of the overhead of detach’s imposed graph

traversals.

Should the garbage collection approach not prove viable, the second

option is to manage detach’s complexity via a reference-counting strategy.

In this strategy, each object will be equipped with a reference count

tracking the number of heap references to that object (stack references are

excluded). If an object’s reference count is 0, then this means it can only be

accessible directly via stack references, which will be invalidated statically

after the detach and are thus not important in our reasoning. At the point

of detach, a runtime mechanism walks the object graph reachable from

the detach’s target, excluding any isolated fields. It then compare the

reference counts on the objects with the discovered graph. If the discovered

graph fully accounts for all reference counts on these objects, and if the

traversal does not encounter the to-be-retracted isolated field, then we

can conclude that the detach target is indeed isolated from the surviving

portions of its region.

Due to the possibility of runtime failure, we expect that program-

mers will only choose to employ detach in cases where they are sure

the detach’s target is indeed isolated; this condition will likely keep the

object graph that detach must traverse to a manageable size. We therefore

2 In a full language, this case would result in an exception instead, which may be handled.
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hope that the runtime traversal check required by detach will in practice

be efficient.

4.10 related work

The type system we have defined in this chapter owes much to a rich

history of language design over the past thirty years. In particular, this

system mixes innovations from several strong lines of work:

• Ownership Types and capabilities

• Regions

• Linear types (and linear regions)

In this section we attempt to broadly characterize notable works from

each school, and discuss the ways in which our system improves on them.

4.10.1 Ownership Types and Nonlinear Uniqueness

While we use the terminology of regions [Tofte and Talpin, 1994], ownership

contexts from the ownership types literature [D. G. Clarke, Potter, and

Noble, 1998] are actually our closer intellectual cousin. Originally proposed

by Clarke, Potter, and Noble in 1998 [D. G. Clarke, Potter, and Noble, 1998],

ownership types associate each object with an ownership context. Each field

(or local declaration) may be annotated with a particular context, limiting

the variables which may be assigned to this location to those owned by

the declared context. These ownership contexts are quite similar to our

use of regions in the type system presented in this chapter; at a high level,



258 a type system for isolation

the primary differences between these concepts is that ownership contexts

are fixed; objects forever live within a single ownership context, and

ownership contexts cannot be merged, consumed, or generated on the fly.

This effectively means that objects can never change owner; patterns such

as merging two collections are not possible under the original ownership

work.

Recognizing these limitations, the PRFJ and AliasJava systems intro-

duced the ability to mix ownership with uniqueness; many other languages

subsequently followed their lead [Aldrich, Kostadinov, and Chambers,

2002; Boyapati and Rinard, 2001]. The idea of unique references with-

out ownership information predates these systems; in object-oriented

languages, their original popular incarnations were via the Eiffel∗, Bal-

loons, and Islands [Almeida, 1997; Hogg, 1991; Minsky, 1996]. Each lan-

guage which uses uniqueness also introduces some notion of “borrowing”

(similar to our preserves annotation on functions), which allows for the

creation of temporary aliases to otherwise-unique objects. Beyond their

borrowing exemptions, these languages all take uniqueness very literally:

a unique reference is the only reference in existence which points to a

particular object. Clarke and Wrigstad weakened this constraint by in-

troducing the idea of external uniqueness, and with it the property of a

dominating reference: an external-unique reference is traversed on all paths

from roots to the objects to which it refers [D. Clarke and Wrigstad, 2003;

D. Clarke, Wrigstad, et al., 2008]. These externally-unique references are

quite similar to our [simple] isolated fields, with one important differ-

ence: our isolated fields dominate all objects reachable from their target,

while external references need only dominate their target. This prevents

externally-unique references from implying transitive ownership. In our
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language, access to an isolated field implies unique access to all objects

reachable from that field—a property missing from externally-unique

references.

Variations on the ownership model exist. Owning object have been made

explicit or abstracted via capabilities [J. Boyland, Noble, and Retert, 2001;

Castegren and Wrigstad, 2016; Clebsch et al., 2015; Haller and Odersky,

2010]. A related line of work on “universes” views owners as modifiers

[Müller and Poetzsch-Heffter, 1999]; this has been extended to thread

safety [Cunningham, Drossopoulou, and Eisenbach, 2007]. Peter Müller

and Arsenii Rudich extended universes with ownership transfer via a

mechanism which bares superficial similarity to our focus/unfocus mech-

anisms [Müller and Rudich, 2007]; these are in fact unrelated (our focus

mechanism comes from Vault [Fähndrich and DeLine, 2002]).

Throughout all this work on combining increasingly-sophisticated own-

ership types with refined ideas of uniqueness, one persistent crutch re-

mains: a heavy reliance on null. Each of these systems has an equivalent

of our language’s consumes function, which renders the caller unable to

re-use the argument after its execution. Unlike in our system, these works

need to ensure that all (or at least some) references are valid at all times.

Thus rather than make consumed arguments statically inaccessible, the

vast majority of these systems employ a “destructive read” which implic-

itly nulls them instead [Aldrich, Kostadinov, and Chambers, 2002; Banerjee

and Naumann, 2002; Boyapati, Lee, and Rinard, 2002; Boyapati and Rinard,

2001; D. Clarke, Wrigstad, et al., 2008], though other approaches (such as

a “swap” primitive) do exist [Haller and Odersky, 2010; Jim et al., 2002].

Several systems adopt the technique of Alias Burying [J. Boyland, 2001]

to avoid this implicit nulling when all possible aliases to a unique object
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are “dead” (will never be used again); unlike our reference invalidation

via region removal, alias burying cannot always eliminate all aliases and

thus a reliance on implicit null still remains.

Relying on implicit null effectively transforms a static error (using an

object which is outside the reservation) into a dynamic one (a null pointer

exception). As we have argued throughout this chapter, managing reserva-

tions manually is error-prone; we must therefore expect that exceptions

introduced to handle reservation misuse will commonly be thrown, re-

quiring programmers to either fall back on the careful reasoning present

in traditional languages, or to introduce exception handling code around

every use of a unique reference—a major headache. Using a swap opera-

tion to avoid this null reliance is not a major improvement. This requires

the programmer to always have a default value available when reading—

an unrealistic requirement unless the object in question has a nullary

constructor, which comes with similar challenges to pervasive null.

The reason these languages opt for a dynamic, rather than static, refer-

ence invalidation mechanism comes down to the difficulty of reasoning

about non-unique aliasing. These systems all allow non-unique objects

to contain unique fields; they also all do not precisely track non-unique

objects. Thus they will in general be unable to determine if two particular

non-unique references refer to the same object, and therefore also unable

to determine if the unique fields within those objects refer to the same or

different targets. These systems have effectively made a different choice in

the trade-off space; they can always freely use unique fields of possibly-

aliased non-unique objects, at the cost of ensuring that these unique fields

are always valid. Our focus mechanism meanwhile blocks any access

to isolated fields whose containing object may alias an already-tracked
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object. This allows us to avoid relying on implicit null, or its close cousin

the swap primitive.

4.10.2 Linear Systems and Regions

In linear type systems, the trade-off of introducing null vs. losing access

to a potentially-large number of objects swings in entirely the opposite

direction. This appears to be due to the languages which first played host

to these ideas; while ownership was always intended for an object-oriented

setting (in which null has long been a fact of life), linear and region types

were originally introduced in a functional context (in which types cannot

be assumed to have a nullary constructor) [Girard, 1987; Tofte and Talpin,

1994; Wadler, 1990]. The first popular toy language to hybridize linear

and nonlinear references was Wadler’s “Linear Types Can Change the

World!” [Wadler, 1990], which while sound did not extend to settings

with mutable data structures. Early work on linear type systems was

characterized by a relatively rigid separation between linear and nonlinear

objects; while a linear object may contain nonlinear data, the reverse is

generally not possible [Odersky, 1992; Smetsers et al., 1994; Walker and

Watkins, 2001]. Linear (and affine) type systems have since been adopted

for many purposes including refinement types in Java [Degen, Thiemann,

and Wehr, 2007], validating transactions, [Beckman, Bierhoff, and Aldrich,

2008], and most notably the correct use of protocols. Linear types for

protocols has two main branches; the first is typestate for objects [DeLine

and Fähndrich, 2004; Fähndrich and DeLine, 2002], and the second is

session types [Vasconcelos, 2012], both of which have become fields of
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study in their own right. The most popular embodiment of a traditional

linear type system for memory management is Rust [Matsakis and Klock,

2014]; we compare with it directly in subsection 4.10.4, and allow it to

stand as a proxy for traditional linear languages.

Tofte and Talpin introduced the idea of regions [Tofte and Talpin, 1994].

Initially, regions associated each allocation with a precise scope during

which it was live; later, this was improved to the lifetime of a named

region which could be explicitly allocated and deleted [Crary, Walker, and

Morrisett, 1999], or even reasoned about explicitly [Henglein, Makholm,

and Niss, 2001]. Regions enable safe stack-based memory management in

a language with seemingly-dynamic allocation. The primary challenge of

regions was closures, which might escape the lifetime of their closed-over

variables’ regions. To handle this, region-based typing introduced the idea

of effect types on functions, explicitly listing the regions which it accessed

[Tofte and Talpin, 1997]. The largest difference between regions and our

system is that our regions aren’t fixed. They can be merged, renamed,

retracted into and explored out from other regions. This in turn removes

the need for complex effect annotations on our functions; by retracting

and merging regions, we can represent complex object graphs via their

simple entry points. Classic regions, meanwhile, were built for memory

management [Jim et al., 2002; Tofte, Birkedal, et al., 2001], and so must

have a more precise view of the objects each region contains. More recently,

this precision has been exploited to reason about precise object layouts for

serialization [Vollmer et al., 2019].

Linear regions—regions whose lifetime is managed a la “Wadler-style”

linear types—have long been a popular synergy. These hybrids introduce

the ability to “open” a region and freely access the objects within it for a
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limited scope [Fähndrich and DeLine, 2002; Walker and Watkins, 2001].

Several of the papers previously listed as explicitly linear or region-based

in fact feature aspects of both [Beckman, Bierhoff, and Aldrich, 2008; De-

Line and Fähndrich, 2004; Haller and Odersky, 2010]. The Cyclone project

[Jim et al., 2002], having made several attempts to formalize their language

[Fluet and Morrisett, 2006; Grossman et al., 2002; Hicks et al., 2003], also

eventually settled on linear regions [Fluet, Morrisett, and Ahmed, 2006].

4.10.3 Significant Complexity

Several systems manage to succeed in ensuring isolation safety and avoid-

ing implicit null (or swap), but in so doing overshoot our desired level

of user-facing complexity [Boyapati and Rinard, 2001; J. T. Boyland and

Retert, 2005; Castegren and Wrigstad, 2016; Clebsch et al., 2015; Jim et al.,

2002]. Here the complexity does not appear to be incidental; it is not clear

how to identify a “simple core” language which would be complete on its

own. Indeed, my experiences designing the type system in this chapter

speak to the speed at which complexity can creep in via even the most

apparently-innocuous design choices.

4.10.4 Closest Cousins and Famous Friends

There are a few existing systems which come quite close to matching our

language design goals; these are summarized in table 4.1. In this table,

the “OwnerJ” row captures the close descendants of original ownership

type systems, including PRFJ and AliasJava, as described in subsection
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Table 4.1: A table of related work, indicating which of our “metrics for success”
has been satisfied by existing systems. A check mark indicates a goal is
satisfied; a cross indicates a goal is not satisfied; a tilde indicates that a
feature is absent, but either could be added or is not applicable to that
language’s design.

Language Abstraction No null/swap Arbitrary graphs Simple

Rust X X × ∼
Cyclone ∼ × X ×
CQual × X X X

Unique X ∼ × ∼
Vault X X ∼ ∼
Mezzo ∼ ∼ ∼ X

Scala∗ X × X X

OwnerJ X × X X

Pony X ∼ ∼ ∼
M# X × X X

Sing# X × × X

4.10.1. The “Unique” row captures the limitations of type systems in the

style of Wadler’s popularization [Wadler, 1990], described in subsection

4.10.2. This subsection proceeds with a detailed description of the projects

in other rows of this table, and discusses how they relate to our work.

Rust. Much of the renewed interest in type systems suitable for reserva-

tion safety has focused on the emergence of Rust, the first such language to

gain widespread adoption [Jespersen, Munksgaard, and Larsen, 2015; Jung

et al., 2017; Matsakis and Klock, 2014; Reed, 2015; Weiss et al., 2019]. There

are several essential differences between our system and Rust; the most

fundamental of these is that Rust is among a number of languages which

have difficulty forming graphs. This is due in a large part to Rust’s notion

of ownership and ownership as domination. In Rust, a field is owned by

its encapsulating object. Also in Rust, a field cannot hold references to its
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owner. This combination ensures that the pattern of a doubly-linked list

we have used as our running example is difficult to implement in Rust;

each node in the list is effectively a peer with the node it references, a

concept which does not sit well with the Rust system. While it is possible

to build object graphs out of borrowed references with a shared lifetime

parameter, the process of doing so is quite complex—and still requires

some associated owner object and associated borrow scope from which it

cannot escape. These restrictions are similar to how our language would

behave were we to have a single object per region; non-simple graphs are

allowed, but the cost is a dramatic increase in static tracking, much of it

borne directly by the user in the form of extra annotations.

Adoption and Focus. We owe our mechanism for focusing objects to

Fähndrich and DeLine’s Adoption and Focus from the Vault language

[Fähndrich and DeLine, 2002]. While the ideas behind focus are largely the

same in our two works, both the formal treatment and the setting in which

they are deployed are less similar. Vault is a primarily linear language for

reasoning about protocol state in which particular objects can be freely

aliased, exempting them from the requirements of linearity. Unlike similar

linear type systems up to this point, Vault’s nonlinear objects are allowed

to contain references to both linear or nonlinear objects. A linear field of

a potentially nonlinear object in vault is roughly analogous to isolated

fields in this type system. This analogy is rough, however; our isolated

references may refer to objects which are freely aliased within their region,

while Vault’s linear fields must be unique references. As in our work, Vault

prevents access3 to isolated fields unless their containing object is focused.

3 though only for writing; reading is always permitted
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As in our work, Vault needs to prevent two potential aliases from being

focused simultaneously. To handle this, Vault introduces the notion of lin-

ear “guards” (analogous to our regions), and explicitly tracks “capabilities

with keys” (analogous to our H environment) to determine which regions

should be accessible for focus. Unlike our focus mechanism, Vault’s focus

is scoped; at the end of the scope, all linear fields of the focused objects

must uniquely point to an object with typestate matching that of the

declared field, but during the focus these fields may have their typestate

changed or may be invalidated.

Vault’s other operation, adoption, has no precise analogue in the type

system presented here. Adoption in vault takes two linear objects, forms a

reference from one to the other, and then returns the “owned” object via a

guarded non-linear reference. The owner—the object which remains linear

and contains a linear reference to this now-nonlinear object—effectively

serves as the region in which this object lives. When the owner is destroyed,

its internal reference to the owned object is made available, restoring the

owned object’s linear status (and necessitating that the owned object have

no other aliases at the time). Guards, which we previously mentioned

as analogues to regions, are effectively an abstraction of this owning

object; this obviates the need to explicitly pass owners to functions which

require the adopted object. This operation has elements of our attach

construct, but actually bears more resemblance to plain assignment into

isolated fields. Our choice to treat every object as freely aliased within a

region avoids any need for the awkward step of “de-linearizing” an object

accomplished via adoption, or the notion of explicit “owner” objects.

Crucially, Vault has no reasoning principle akin to the simple (or non-

simple) regions/fields/objects in this type system; in Vault, what we would
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view as violations of simplicity are permitted within focus blocks, but even

here the linearity of “linear” fields must be maintained. Vault proposes

an extension by which linear fields exposed via focus may themselves be

adopted, resulting in the ability to alias a linear field within a focus scope;

this mechanism is both unclear and appears remarkably difficult to use.

John Boyland lifted this adoption and focus mechanism directly to the

domain of fractional permissions via a construct called Nesting, which

additionally encompasses the idea of storing read-only aliases of a linear

object within several different mutable aliasable objects, and leveraging

the ideas of focus and defocus4 to later recover unique access to them

[J. T. Boyland, 2010].

In comparison, our system requires less rigid management of focused

objects and does not enforce linearity on isolated objects themselves—

just on their regions. In our system, all references—even simple isolated

references—can point to objects which participate in cycles; this would not

be possible in Vault, reducing the ease with which Vault can implement

the running doubly-linked list example.

To the best of our knowledge, there is only one other mechanism which

bears similarity to focus: the restrict [Foster, Terauchi, and Aiken, 2002]

and confine [Aiken et al., 2003] qualifiers from CQual. In this line of

work, the authors propose a monomorphic type system which leverages a

flow-insensitive alias analysis to generate a set of abstract objects, which

are akin to the regions in this work or the “owners/adopters” in Vault.

Like other region work of this era, CQual’s type system then uses effect

types to determine which abstract objects may be accessed in a given scope.

The restrict and confine constructs generate a scope in which a single

4 Boyland dropped the “focus must have a scope” requirements of Vault
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variable (or pure expression in the case of confine) is elevated to the sole

accessible reference for some abstract object, allowing strong updates to

occur on that object. This is analogous to focus introducing the ability

to read and modify isolated fields. While CQual’s mechanism is similar,

certain sensible design choices it makes for the domain of low-level C

programs are not a match for our domain; in particular, it relies on the

ability to perform a global inter-procedural analysis.

Capabilities in Scala. In their 2010 paper [Haller and Odersky, 2010]

Philipp Haller and Martin Odersky set out to design a language with

nearly identical goals to those we outlined here. Though derived indepen-

dently, our surface features are eerily similar; both our work supports an

idea of isolated (@unique) fields which dominate their entire reachable

object graph, and annotate methods with preserves (@transient, @peer)

or consumes (@unique on methods). Both languages back these surface

features with static labeled regions (or capabilities), which are consumed

whenever an object within the region (guarded by the capability) is ren-

dered invalid. We both even share the attach (capture) virtual command.

This is where the similarity ends, however; the system proposed by Haller

and Odersky has no equivalent to focus or explore, and can only read

isolated (@unique) fields by swapping them with an object in some disjoint

region. This is only slightly better than relying on implicit null; it assumes

that every context in which one wishes to dereference an isolated field

contains the means to construct a replacement for it. In practice, this

will likely result in the programmer opting for explicit option types, and

manually swapping with a None value.

Sing#, M# and Pony. Sing# is a language developed at Microsoft Re-

search to enable the single-process-space operating system Singularity
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[Fähndrich et al., 2006]. Sing# includes a basic notion of region types via

their placed types, which reside in a special region of memory and can be

shared among processes. At some point near 2008, the Singularity project

moved from Microsoft Research and evolved into the aimed-at-production

Midori project, which came with its own language, M#.5 This language

is far more fully-featured, and has a notion of isolated types quite like

the isolated fields presented in this chapter [Gordon et al., 2012]. It also

includes a notion of a “recovery” scope, which allows a program to tem-

porarily violate isolation. It does not however reason about aliasing at

all, relying on either immutability or destructive reads to access isolated

fields of non-isolated objects, exposing programmers once again to the

dangers of implicit null. Pony, a more recent language out of Microsoft

research, uses a similar set of keywords and a similar notion of a recovery

scope, but it too does not reason precisely enough about aliasing to sup-

port focus-style reads [Clebsch et al., 2015]. Unlike many of the languages

discussed in this section, these languages’ target domain is safe concurrent

code in which isolation is the primary reasoning principle.

Mezzo. Mezzo is a recent language in the ML family featuring duplica-

ble and affine permissions in a larger language. Mezzo integrates many of

the mechanisms of work that has come before; it incorporates a form of

fractional permissions to allow immutability, it easily builds immutable

graphs, and it leverages adoption (inspired by but not the same as [Fähn-

drich and DeLine, 2002]) to allow the formation of non-tree object graphs.

Mezzo’s treatment of adoption includes one essential feature not found in

other related work—the ability to destructively read a potentially-aliased

5 Oddly enough the best source of this I have is a long-since-deleted job post once
located here: https://careers.microsoft.com/jobdetails.aspx?ss=&pg=0&so=&rw=11&
jid=111551&jlang=EN&pp=SS

https://careers.microsoft.com/jobdetails.aspx?ss=&pg=0&so=&rw=11&jid=111551&jlang=EN&pp=SS
https://careers.microsoft.com/jobdetails.aspx?ss=&pg=0&so=&rw=11&jid=111551&jlang=EN&pp=SS
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field of an object. This object is then retrieved into its own region; sub-

sequent attempts to access it via its original region will cause a runtime

error. This version of destructive reading is similar to the detach construct

in this chapter, except that detach is built to work in harmony with our

focus mechanism, and thus must fail at the point of detaching if the

detaching object graph is still reachable (or can still reach) objects which

remain in the original region. Mezzo’s novel destructive read, meanwhile,

allows references to exist within the region and makes it a dynamic error

to use them. While Mezzo does indicate that extensions involving focus

are possible, it did not pursue them and has not determined how such a

mechanism would interact safely with destructive reads. It is also unclear

if Mezzo’s adoption mechanism allows the formation of arbitrary graphs,

or only DAGs. This combination of limitations makes it difficult to see

how a doubly-linked list could be implemented in Mezzo without relying

on Mezzo’s version of implicit null.

4.11 conclusion

By leveraging the idea of simplicity, we have built a type system which

uses regions to ensure reservation safety, without introducing uninferrable

user-facing complexity, relying on null, or forcing the entire object graph

to form a forest. This type system is an appropriate match for Gallifrey’s

needs, and can be used to ensure restrictions in Gallifrey are respected.



5
C O N C L U S I O N

Writing programs against weak consistency does not always doom the

programmer to an endless parade of hard-to-find bugs. Strong consistency

can scale, especially within a single datacenter. The story which opened

this dissertation—the story of a trade-off between correctness on the one

hand and performance on the other—is increasingly becoming the story of

yesterday. Through the work presented in this dissertation and the work

of countless others, we are pushing the domain of consistency past the

familiar abstraction of reads and writes, and into the application domain.

We are reasoning about the consistency of the whole application, not the

consistency of some intermediate layer (e.g. memory) within it.

5.1 mixt

The first tentative steps in this direction come with MixT, presented in

chapter 1. MixT argues that taking a purely operational view of consis-

tency is short-sighted: that the consistency of operations is derived from

data invaraints, and thus the better place to reason about consistency is at

the level of individual objects, not individual operations. MixT leverages

this idea to introduce mixed-consistency transactions, which can manipulate

information with multiple consistency levels in a single transaction. MixT’s

key technology is an adaptation of a traditional integrity information-flow
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type system, used within individual transactions to ensure that weakly-

consistent observations cannot unduly influence strongly-consistent muta-

tions. MixT’s type system guarantees that all well-typed mixed-consistency

transactions will have a strict separation between more-consistent and less-

consistent information; while more-consistent information can influence

less-consistent information, the reverse is impossible without endorsement.

MixT takes advantage of this separation to implement mixed-consistency

transactions via a novel consistency-aware transaction splitting transla-

tion, compiling each mixed-consistency transaction down to a sequence of

linked single-consistency transactions.

5.2 monotonicity

While MixT recognizes that consistency is best considered at the level of

information rather than operations, it still has a rather traditional take

on the role of weak consistency: that while weak consistency invites

unintuitive errors, its use is necessary to avoid expensive synchronization.

As demonstrated by Derecho and Gallifrey, this doesn’t have to be true. The

key insight at the heart of both Derecho and Gallifrey is monotonicity. Data

that is shared monotonically only grows; mutations to monotonic data

must inflate it according to some order, and observations of monotonic

data can only determine lower bounds in this order. By using monotonicity,

programs can be consistent—and convergent—by construction, even if the

underlying replication is weakly consistent. Put simply, monotonicity is

one way to decouple the consistency of an application from the consistency

of the storage upon which it is built. This idea of leveraging monotonicity
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to write convergent programs has been explored previously [Conway et al.,

2012; Kuper and Newton, 2013; Meiklejohn and Van Roy, 2015]; where

Derecho and Gallifrey innovate is in how this basic abstraction is exposed

to the programmer.

5.3 derecho

In Derecho (chapter 2), monotonicity is confined to a core language over

a Shared State Table (SST) synchronized via Remote Direct Memory Ac-

cess (RDMA). This SST provides the abstraction of a vector of monotonic

single-writer registers, storing booleans, integers, or small sets. Programs

atop these registers are composed of reducers—for example min, max,

or set union—which fold monotonic operators across the entire vector,

producing a summary of its contents as a single value. While the SST’s

core language is limited, it is expressive enough to implement consensus

with minimal synchronization, unlocking impressive performance for state

machine replication. Though Derecho does allow programmers to inter-

act directly with the monotonic SST, its primary user-facing abstraction

is the strongly-consistent replicated object. Using Derecho’s replicated

objects, programmers can build services comprised of constellations of

actors which communicate via a custom remote method invocation (RMI)

framework. Our evaluation shows that users of these replicated objects

enjoy performance benefits exceeding an order of magnitude greater than

would be possible with the standard tools in this space.
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5.4 gallifrey

Gallifrey (chapter 3) unlocks the promise of monotonic programming at

the core of Derecho and generalizes it, allowing programmers to share any

object by restricting its interface to only those operations which are safe

to call concurrently. Individual objects may support more than one valid

restriction; for example, a boxed integer could be safely shared under a

restriction which allows incrementing and testing if the counter is at least a

certain value, or under a restriction which allows decrementing and testing

if the counter is at most a certain value. Gallifrey also allows objects to

transition between different restrictions, changing the allowed operations

on a single object over time. For example, an election object could initially

be shared under a restriction that allows voting, and subsequently be

shared under a restriction which allows tallying of votes.

5.5 a type system for gallifrey

Key to Gallifrey’s promise is its ability to seamlessly integrate the world of

monotonic shared objects with the world of unrestricted local objects. This

ability is enabled by a novel linear, region-based type system (presented

in chapter 4) which enforces isolation between shared objects In particular,

this type system enforces that access to any object guarded by a restriction

may only be made via that restriction. Chapter 4’s type system achieves

this with a minimum of user-facing complexity, while preserving the

familiar abstractions of Java, permitting arbitrarily-shaped object graphs,

and avoiding any reliance on null references.
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5.6 future directions

The results of this dissertation present opportunities for extension in all di-

rections. MixT’s use of an information-flow type system leads to questions

about the formulation of consistency itself—presenting an opportunity to

reformulate consistency models not as a simple trace property for stor-

age layers, but as a deeper semantic condition on applications in general.

Derecho’s use of a simple monotonic table to build consistent replica-

tion demonstrates that monotonicity is applicable in more situations than

were previously explored. This calls into question our understanding of

monotonic logic programming; what are the true limits of monotonicity?

And when a protocol could be phrased either monotonically or non-

monotonically, what principles should be employed in making that choice?

Gallifrey—and its enabling type system—open up a world of possibili-

ties in both the language and system design space; the future directions

outlined in section 3.9.1 only begin to scratch the surface of these.

5.7 wrapping up

Taken together, the works presented in this dissertation constitute an ar-

gument that the consistency of replication need not always constrain the

consistency of an application. With MixT, Derecho, and Gallifrey, pro-

grammers can write correct programs atop weak consistency—by isolating

weak components from strong, layering consistent replication atop weak

consistency, or restricting operations to those guaranteed to be correct

under weak consistency. This technology improves upon the state of the
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art in distributed programming, enabling programmers to enjoy both the

speed of weakly-consistent replication and the clear semantics of strong

consistency.



A P P E N D I C E S

277





A
A P P E N D I X 1

This appendix contains sample programs for Gallifrey, capturing both the

shared references introduced in chapter 3 and the type system introduced

in chapter 4. These sample programs rely on the full design of Gallifrey

and chapter 4’s type system, including elements not yet supported by the

Gallifrey compiler.

a.1 a doubly-linked list

class List<T> {
static class ListNode {
ListNode next;
ListNode prev;
isolated T payload;

public ListNode(consumes T payload){
this.next = this;
this.prev = this;
this.payload = payload;

}

public ListNode(consumes (ListNode next, ListNode prev),consumes T
payload ){

this.next = next;
this.prev = prev;
this.payload = payload;

}
}

isolated ListNode head;

void add_to_list(consumes T item){
ListNode old_head = this.head;
this.head = new ListNode(old_head, old_head.prev, item);
old_head.prev = this.head;

}
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isolated T remove_item(
preserves (preserves T -> isolated bool) which){
ListNode curr = this.head;
while (!which(curr.payload)){

curr = curr.next;
}
curr.prev.next = curr.next;
curr.next.prev = curr.prev;
curr.next = curr;
curr.prev = curr;
ListNode ret = detach(curr);
return ret.payload;

}

void for_each(preserves U foldarg, preserves (preserves U, preserves T
-> void) foldfun){

curr = this.head;
do {
foldfun(foldarg,curr.payload);
curr = curr.next;

} while (curr != l.head);
}

void map(preserves: consumes T -> isolated T mapfun){
curr = this.head;
do {
curr.payload = mapfun(curr.payload);
curr = curr.next;

} while (curr != l.head);
}

}

a.2 simple channels

interface Queue<T>{
void enqueue_item(T t);
isolated T dequeue_item() throws NoItemException;
bool item_ready();

};

Restriction EnqueueOnly for Queue {
allows enqueue_item;

};

Restriction SingleDequeuer extends EnqueueOnly for Queue {
allows as test item_ready;
allows dequeue_item contingent AlreadyDequeued;

};

abstract class Channel<Message>{
shared Restriction[SingleDequeuer] Queue<Message> event_queue = new

Queue<Message>();
abstract void run_action(Message m);

public void process_messages(){
while (true){

when (event_queue.item_ready()){
Branch dequeue_branch = branch(event_queue){
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T item = event_queue.dequeue_item();
};
dequeue_branch.commit();
//This branch is committed, so peek isn’t returning anything

provisional anymore.
//it may be a stale value, but it’s a "valid" stale value.
run_action(dequeue_branch.peek[item]);

}
}

}
public shared Restriction[EnqueueOnly] Queue<Message>

get_submission_queue(){
return event_queue;

}
}

a.3 counter

class Counter {
int count = 0;
public void increment(){

++count;
}
public int get(){

return count;
}

public bool at_least_target(int threshold){
return count >= threshold;

}
};

Restriction AddMostly for Counter {
allows increment;
allows as test at_least_target;
allows get contingent MissedSomeIncrements;
merge (increment i, get g -> int count){
reject g with MissedSomeIncrements();

}
}

Restriction DisplayMostly for Counter {
allows get;
allows at_least_target;
allows increment contingent StateDisplayed;
merge (increment i, get g -> int count){
reject i with StateDisplayed();

}
}

Restriction AddOrDisplay = AddMostly | DisplayMostly;



282 appendix 1

a.4 election

class Candidate {
public final String name;
isolated shared[CountOrDisplay] Counter c;
Branch observing;

public void vote() throws InconsistentVote{
match c with
| shared[AddMostly] c ⇒ c.increment();
| shared[DisplayMostly] _c ⇒ {

pull(); //if in a branch, synchronize with external events
candidateBranch = branch(_c){_c.increment};
candidateBranch.peek[_c].endorse(StateDisplayed(i) ⇒ throw new

InconsistentVote(););
candidateBranch.commit();

}
}

provisional int estimate_count() {
match c with
| shared[DisplayMostly] c ⇒ return c.get();
| shared[AddMostly] _c ⇒ return observing.open(_c){i = _c.get();}.

peek[i];
}

};

a.5 version control

class Repository {
String name;
shared[AddOnly] Set<Commit> commit_list;
shared[AddOnly] Set<Head> head_list;
Branch[shared[AddOnly] Set<Commit> commit_list,

shared[AddOnly] Set<Head> head_list,
shared[RO] Commit new_commit,
pc : InvalidatableRead] working_branch;

local Head current_head;

public void init() {
//init
working_branch = branch(commit_list, head_list, current_head){

local Commit new_commit = new Commit("current",
current_head.current_commit,
current_head.current_commit.file_list);

};
}

public void add(consumes File f) {
working_branch.open(f) {

new_commit.add_file(f);
};

}
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public void commit(preserves String message) {
working_branch(message){

new_commit.set_name(message);
commit_list.add(new_commit);
current_head.current_commit = new_commit;

};
working_branch.commit();
init();

}

public void log() {
local Commit commit = current_head.current_commit;
while (commit != null) {

System.out.println(commit.name);
commit = commit.parent;

}
}

public void checkout(consumes Head h) {
head_list.add(current_head);
current_head = h
working_branch.abort();
init()

}

void pull(preserves Head h) {
working_branch.open(h) {

// prompt the user to manually merge files
}

}
};

class Commit {
String name;
isolated Commit parent;
isolated Set<File> file_list;

Commit(preserves String commit_name, consumes Commit parent_commit,
consumes Set<File> files){

set_name(commit_name);
parent = parent_commit
file_list = files

}

void set_name(preserves String nm) {
name = nm

}

void add_file(consumes File f) {
//Remove file of the same name to be replaced
file_list.insert(f);

}

void remove_file(consumes File f) {
file_list.erase(f);

}
};

class Head {
String name;
isolated Commit current_commit;

Head(preserves String nm, consumes Commit commit) {
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name = nm;
current_commit = commit;

}
};

class File {
String name;
isolated List<String> lines;

};

a.6 actors

class Channel<Send, Rcv>{
private shared[appendOnly] Queue<Send,Rcv> requests;
private shared[dequeProvisional] Queue<Rcv,Send> responses;

public void send(consumes Send m){
requests.enq(m);

}

public isolated Rcv rcv() {
when (responses.non_empty()){
Branch b = branch(responses){
ret = responses.deq();

}
//if there is only one replica of this Queue with
//access to provisional deq, then this commit should be "Free"
b.commit();
return b.peek[ret];

}
}

}

interface ChannelProducer<Send,Rcv>{
public isolated Channel<Send,Rcv> connect();

}

class ChannelManager<Send,Rcv> implements ChannelProducer<Send,Rcv>{
public shared[EnqMostly] Queue<Channel<Rcv,Send>> created;
public Channel<Send,Rcv> connect(){
shared[appendMostly] Queue<Send,Rcv> dir_1 = new Queue<Send,Rcv>();
shared[appendMostly] Queue<Rcv,Send> dir_2 = new Queue<Rcv,Send>();
//the more-restricted restrictions channel’s constructor
//takes are supertypes of this restriction
created.insert(new Channel(dir_2,dir_1));
return new Channel(dir_1,dir_2,);

}
}

Restriction SingleUser for ChannelManager<Send,Rcv> {
allows connect();
//because created.deq is provisional, so must this be
allows created.deq() contingent AlreadyDequeued;
allows test created.non_empty();

};

Restriction All for ChannelProducer<Send,Rcv>{
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allows connect();
};

abstract class Server<Send,Rcv>{
shared[SingleUser] ChannelManager<Send,Rcv> new_queues;
isolated List<Channel<Rcv,Send>> queues;
public abstract void handle_message(consumes Send s, preserves Channel<

Rcv,Send> chan);
public void receive(){
while (true){
when any {

| new_queues.non_empty() =>
branch(new_queues, queues){queues.enq(new_queues.created.deq());}.

commit();
| queues.fold(false, λ q, a . q.responses.non_empty() || a) =>
handle_message(queues.filter(λ q . q.responses.non_empty()).first()

.rcv());
}

}
}

}

a.7 shopping carts

a.7.1 Centralized Shopping Cart

class ShoppingCart{...}
Restriction Shopping for ShoppingCart{...}
Restriction Checkout for ShoppingCart{...}
Restriction All for ShoppingCart = Shopping | Checkout;

using CartServer_i = Server<SessionToken,shared[All] ShoppingCart>;
using CartConnectorService = ChannelManager<SessionToken,shared[All]

ShoppingCart>;
using CartConnector = ChannelProducer<SessionToken,shared[All]

ShoppingCart>;

class SingleCartServer extends CartServer_i{

public SingleCartServer(){
shared[SingleUser] CartConnectorService cm = new CartConnectorService()

;
//this is an error if run more than once, so this server is a

singleton.
gal://localhost/CartConnector/All/getCart = cm;
super(cm);

}

public void receive(){
super.receive();

}

isolated map<SessionToken, shared[All] ShoppingCart> carts;
public void handle_message(consumes SessionToken req_tok, preserves

Channel<shared[All] ShoppingCart, SessionToken> chan){
chan.send(carts[req_tok]);
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}
}

class CartClient {
Channel<SessionToken, shared[All] ShoppingCart> cart_channel = gal://

localhost/CartConnector/All/getCart.connect();
shared[All] ShoppingCart my_cart;

CartClient(){
cart_channel.send(SessionToken);
my_cart = cart_channel.receive();

}

/*
other shopping-related code goes here...
*/

}

a.7.2 Distributed Shopping Cart

class ShoppingCart{...}
Restriction Shopping for ShoppingCart{...}
Restriction Checkout for ShoppingCart{...}
Restriction SthenC = Shopping | Checkout;

class ShoppingCartService{
public shared[SthenC] ShoppingCart new_cart();
public void checkout();

};

class ShoppingCartServer{
public shared[SthenC] ShoppingCart new_cart(){
shared[SthenC] ShoppingCart sc = new ShoppingCart();
return sc;

}

public void checkout(shared[SthenC::Checkout] ShoppingCart done_cart){
/* does some business logic */

}

};

//somewhere in the shopping cart server...

main(){
localhost/shared[All] ShoppingCartService cart_service = new

ShoppingCartServer();
}
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A P P E N D I X 2

In this appendix, we present the type system from chapter 4 with all the

rules an syntax in one place.
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b.1 syntax

b.1.1 Surface Syntax

p ::= e | [H] ` τ fname[H](Γ){e}; p

| qre τ fname(q(τ x, . . .), . . .); p

e ::= v | x | x = e | e. f | e. f = e | e⊕ e | e; e | e(e) | fname

| if (e) {e} else {e} | while (e) {e}

| declare x : τ in {e} | focus x | explore x. f

| retract e | unfocus x | attach e to e

| send-τ | receive-τ

v ::= n | true | false | l | constant

⊕ ::= ; | + | ∗ | − | && | ||

fields(Cls) ::= { f : qr τ, . . .}

qr ::= isolated | ·

τ ::= Cls | int | bool | void | (q τ, . . .→ qre τ)

q ::= consumes | preserves

qre ::= isolated | k
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b.1.2 Typing Contexts and Virtual Commands

Γ ::= x : ` τ, Γ | ·

H ::= `〈〉,H | `〈X〉,H | ·

P ::= l : ` τ, P | ·

X ::= x[F], X | ·

F ::= f 7→ `, F | ·

cmd ::= focus `@x | explore `@x. f | retract ` | unfocus `@x

| attach ` to ` | consumes ` | preserves `
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b.2 typing rules

b.2.1 Structures, Assignment, Sequence

varref

H ` `

H; Γ, x : ` τ; P ` x : ` τ a H; Γ

sequence

H; Γ; P ` e1 : `1 τ1 a H′; Γ′ H′; Γ′; P ` e2 : `2 τ2 a H′′; Γ′′

H; Γ; P ` e1;e2 : `2 τ2 a H′′; Γ′′

field reference

H; Γ; P ` e : ` τ0 a H′; Γ′

f : qr τ ∈ fields(τ0) H′ ` qr e@`. f : `′ H′ ` `′

H; Γ; P ` e. f : `′ τ a H′; Γ′

field assignment

H; Γ; P ` e1 : ` τ0 a H′; Γ′ f : qr τ ∈ fields(τ0)

H′; Γ′; P ` e2 : `′ τ a H′′; Γ′′ ` qr e1@`. f = `′ : H′′ ⇒ H′′′

H; Γ; P ` e1. f = e2 : `′ τ a H′′′; Γ′

assign-Γ

H; Γ; P ` e : `τ a H′; Γ′, x : `iτ H′ ` x@`i = `

H; x : `0τ, Γ; P ` x = e : ` τ a H′; Γ′, x : `τ
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b.2.2 Functions

apply

H; Γ; P ` e f : ` f (q τ → qr τ′) a H′; Γ′

H′; Γ′; P ` e : `eτ a H′′; Γ′′ Γ′′ ` (q `e → qr `) : H′′′ ⇒ Hout

H; Γ; P ` e f (e) : `τ a Hout; Γ′′

lookup

(fname : τ) ∈ F ` fresh

H; Γ; P ` fname : ` τ a Γ;H, `〈 〉

define

fname : (q τ → qr τ′) ∈ F

`〈 〉; x : ` τ; · ` e : `′ τ′ a H f 1,H f2 ; Γ′f · ` (q `→ qr `
′′) : `〈 〉 ⇒ H f 1

` qr τ′ fname(q τ x){e}
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b.2.3 IMP

constant

` fresh

H; Γ; P ` n : ` int a H, `〈 〉; Γ

bool-constant

b ∈ {true, false} ` fresh

H; Γ; P ` b : ` bool a H, `〈 〉; Γ

declare

x /∈ Γ x /∈ F

H; Γ, x : ⊥ τ; P ` e : ` τ′ a H′; x : `′τ, Γ′

H; Γ; P ` declare x : τ in{e} : ` τ′ a H′; Γ′

infix

H; Γ; P ` e1 : ` τ a H′; Γ′ H′; Γ′; P ` e2 : ` τ a H′′; Γ′′ ` τ ⊕ τ

H; Γ; P ` e1 ⊕ e2 : ` τ a H′′; Γ′′

conditional

H; Γ; P ` e1 : `b bool a H′; Γ′

H′; Γ′; P ` e2 : `lτ a Hl ,H2; Γl , Γ2 H′; Γ′; P ` e3 : `rτ a Hr,H3; Γr, Γ3

Hl ; Γl ≡m Hr; Γr m(`l) = `r vars(Γ) = vars(Γl)

H; Γ; P ` if(e1) {e2} else {e3} : `l τ a Hl ; Γl

while

H; Γ; P ` e1 : `b bool a H′; Γ′

H′; Γ′; P ` e2 : ` τ a Hl ,H2; Γl , Γ2 H′; Γ′ ≡m Hl ; Γl

H; Γ; P ` while(e1) {e2} : ⊥ void a H′; Γ′
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b.2.4 Virtual Commands

focus

H; Γ; P ` x : ` τ a H′; Γ′ Γ′ ` focus `@x a H′ ⇒ H′′

H; Γ; P ` focus x : ` τ a H′′; Γ′

explore

H; Γ; P ` x : ` τ a H′; Γ′

Γ′ ` explore `@x. f : H′ ⇒ H′′ H′′; Γ′; P ` x. f : `′ τ a H′′′; Γ′′

H; Γ; P ` explore x. f : `′ a H′′′; Γ′′

retract

H; Γ; P ` e : ` τ a H′; Γ′ Γ′ ` retract ` : H′ ⇒ H′′

H; Γ; P ` retract e : ⊥ void a H′′; Γ′

unfocus

H; Γ; P ` x : ` τ a H′; Γ′ Γ′ ` unfocus `@x : H′ ⇒ H′′

H; Γ; P ` unfocus x : ` τ a H′′; Γ′

attach

H; Γ; P ` e1 : `1 τ1 a H′; Γ′

H′; Γ′; P ` e2 : `2 τ2 a H′′; Γ′′ Γ′′ ` attach `1 to `2 : H′′ ⇒ H′′′

H; Γ; P ` attach e1 to e2 : `2 τ1 a H′′′; Γ′′[`1 7→ `2]

b.2.5 Locations and Communication

location-reference

P, l : ` τ ` l : ` τ

locations

P ` l : ` τ H ` `

H; Γ; P ` l : ` τ a H; Γ



294 appendix 2

H; Γ; P ` send-τ : (consumes τ → void) a Γ;H

H; Γ; P ` receive-τ : (void→ isolated τ) a Γ;H

b.3 heap rules

b.3.1 Well-Formed

Γ;H well-formed

∀x : ` τ ∈ Γ, `′〈x[. . .], . . .〉 ∈ H: ` = `′

` Γ;H

b.3.2 Fields and Assignment

isolated-field-reference

H′, `〈x[F, f 7→ `′]〉 ` isolated x. f @` : `′

isolated-field-assignment

` isolated x. f @` = `′ : H, `〈x[F, f 7→ `′′]〉 ⇒ H, `〈x[F, f 7→ `′]〉

non-isolated fields

H ` · e. f @` : `

non-isolated assignment

` · e. f @` = ` : H ⇒ H
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region-valid

H, `〈X〉 ` `

untracked

x /∈ {x1, . . . , xn}

H, `〈x1[F1], . . . , xn[Fn]〉 ` x@` untracked

assignment-valid

H ` x@` untracked

H ` x@` = `′

b.3.3 Virtual Commands

focus-heap

Γ, x : ` τ ` focus `@x : H, `〈〉 ⇒ H, `〈x[ ]〉

unfocus-heap

Γ ` unfocus `@x : H, `〈x[], X〉 ⇒ H, `〈X〉

explore-heap

F = f1 7→ `1, . . . , fn 7→ `n f /∈ { f1, . . . , fn} `′ fresh

Γ ` explore `@x. f : H, `〈x[F], X〉 ⇒ H′, `〈x[F, f 7→ `′], X〉, `′〈 〉

retract-heap

Γ ` retract `′ : H, `〈x[F, f 7→ `′], X〉, `′〈〉 ⇒ H, `〈x[F], X〉

attach-heap

H′ = H[`1 7→ `2] X′1 = X1[`1 7→ `2] X′2 = X2[`1 7→ `2]

` attach `1 to `2 : H, `1〈X1〉, `2〈X2〉 ⇒ H′, `2〈X′1, X′2〉

attach-heap-noop

Γ ` attach ` to ` : H ⇒ H
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b.3.4 Functions

consumes

Γ ` consumes ` : H, `〈〉 ⇒ H

preserves

Γ ` preserves ` : H, `〈〉 ⇒ H, `〈〉

preserve-isolated-func

Γ ` q ` : H ⇒ H′ `′ /∈ region-names(Γ,H′)

Γ ` (q `→ isolated `′) : H ⇒ H′, `′〈 〉

consume-func

Γ ` (consumes `→ isolated `′) : H ⇒ H′

Γ ` (consumes `→ · `′) : H ⇒ H′

preserve-simple-func

Γ ` preserves ` : H ⇒ H

Γ ` (preserves `→ · `) : H ⇒ H

b.4 meta-rules

b.4.1 Equivalences

region-α-equivalence

m = (`1 7→ `′1, . . . , `n 7→ `′n) is a bijection from regions(H) to regions(H’)

H = `〈x[ f 7→ `′′, . . .], . . .〉, . . .

H, Γ ≡m m(`)〈x[ f 7→ m(`′′), . . .], . . .〉, . . . ; {x : m(`)τ | x : `τ ∈ Γ}
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b.5 dynamic semantics

b.5.1 Evaluation Contexts

Rd : 2l

π : l ⇀ o

o : (τ, v)

σ : x ⇀ l

E ::= [·] | E⊕ e | l ⊕ E | E; e | l; E | if (E) {e} else {e}

| while (E) {e} | x = E | E(e) | l(E) | E. f

| send E | receive E | attach E e | attach l E

| focus E | unfocus E | explore E | retract E

(Rd, π, σ, e) eval−−→ (R′d, π′, σ′, e′)

(Rd, π, σ, E[e]) eval−−→ (R′d, π′, σ′, E[e′])

b.5.2 Small-Step Semantics

π ` l ↪→ l
π(l) = (τ, v) v[ f ] = l′

π ` l ↪→ l′

π ` l ↪→ l′ π ` l′ ↪→ l′′

π ` l ↪→ l′′
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σ(x) ∈ Rd

(Rd, π, σ, x) eval−−→ (Rd, π, σ, σ(x))

l fresh

(Rd, π, σ, constant) eval−−→ (Rd ∪ {l}, π[l 7→ (typeo f (constant), constant)], σ, l)

ll , lr ∈ Rd π(ll) = ol

(Rd, π, σ, ll ; lr)
eval−−→ (Rd, π, σ, lr)

ll , lr ∈ Rd π(ll) = ol π(lr) = or

(Rd, π, σ, ll ⊕ lr)
eval−−→ (Rd, π, σ, [[⊕]](ol , or))

l ∈ Rd π(l) = true

(Rd, π, σ, if(l){e} else {ei})
eval−−→ (Rd, π, σ, e)

l ∈ Rd π(l) = false

(Rd, π, σ, if(l){ei} else {e})
eval−−→ (Rd, π, σ, e)

(Rd, π, σ, while (e1) {e2})
eval−−→ (Rd, π, σ, if(e1) {e2; while (e1) {e2}})

(Rd, π, σ, declare x : τ in e) eval−−→ (Rd, π, σ, e)

(Rd, π, σ, x = l) eval−−→ (Rd, π, σ[x 7→ l], l)

l f ∈ Rd π(l f ) = (τf , v f )

Fd(v f ) = λx.e e ≡α e′ FV(e′) = {x′} x′ fresh

(Rd, π, σ, l f (l))
eval−−→ (Rd, π, σ, {x′ = l; e′})
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dom(π′) = R′d ` π′ π′(l) = (τ, v) ∀l′ ∈ dom(π′). π′ ` l ↪→ l′

(Rd ] R′d, π ] π′, σ, send τ(l)) eval−−→ (Rd, π ] π′, σ, l)

dom(π′) ∩ Rd = ∅

` π′ π′(l) = (τ, v) ∀l′ ∈ dom(π′). π′ ` l ↪→ l′

(Rd, π ] π′, σ, receive τ())
eval−−→ (Rd ∪ dom(π′), π ] π′, σ, l)

l ∈ Rd π(l) = (τ, v) v[ f ] = l2

(Rd, π, σ, l. f ) eval−−→ (Rd, π, σ, l2)

l ∈ Rd π(l) = (τ, v) qr f ∈ fields(τ)

(Rd, π, σ, l. f = l2)
eval−−→ (Rd, π[l 7→ (τ, v[ f 7→ l2])], σ, l2)

cmd ∈ {attach l li, focus l, unfocus l, explore l, retract l}

(Rd, π, σ, cmd) eval−−→ (Rd, π, σ, l)

[[+]]((int, n1), (int, n2)) , n1 + n2

[[∗]]((int, n1), (int, n2)) , n1 ∗ n2

[[−]]((int, n1), (int, n2)) , n1 − n2
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b.6 configuration typing

b.6.1 Locations in the Heap

∀l ∈ dom(π), τ, v s.t. l = (τ, v): ∀ f , l′ s.t. v[ f ] = l′:

∃qr, τf , v f s.t. qr f τf ∈ fields(τ) ∧ π(l′) = (τf , v f )

` π

π(l) = (τ, v) qr f ∈ fields(τ) v[ f ] = l′

π ` l[ f ] = l′

∀l : (l ∈ dom(π))⇒ ∃`, τ, v: (P ` l : ` τ) ∧ (π(l) = (τ, v))

∀l, l′, f : (π ` l[ f ] = l′)⇒ ∃`, τ, τ′ : P ` l : ` τ ∧ ((P ` l′ : ` τ′) ∨ (isolated f : τ′ ∈ fields(τ)))

` π : P
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b.6.2 Simplicity

∀l, τ s.t. P ` l : ` τ: π; P ` l simple ` π : P

π; P ` ` simple

π(l) = (τ, v) isolated f ∈ τ

P ` l : ` τ P ` v[ f ] : `′ τ′ ` 6= `′ π; P ` `′ dominated

π; P ` `′ simple π; P ` `′ no-cycles ` π : P

π; P ` l. f simple

π(l) = (τ, v) · f ∈ τ

π; P ` l. f simple

π( f ) = (τ, v) ∀qr f ∈ fields(τ): π; P ` l. f simple

π; P ` l simple

π;P ` ` dominated if:

∀l1, l2, l3, l4 where :

P ` l1 : `1τ1 for some τ1 and `1 6= `

∧P ` l2 : `τ2 for some τ2

∧P ` l3 : `3τ3 for some τ3 and `3 6= `

∧P ` l4 : `τ4 for some τ4

∧π ` l1[ f1] = l2 for some f1

∧π ` l3[ f3] = l4 for some f3

Then l1 = l3 ∧ f1 = f3.



302 appendix 2

π(l) = (τ, v) P ` l : ` τ

P; π ` l : ` τ

P; π ` l : ` τ P; π ` l′ : ` τ′

P; π ` l ->l′

P; π ` l : ` τ P; π ` l′ : `′ τ′

π(l) = (τ, v) v[ f ] = l′ isolated f : τ′ ∈ fields(τ)

P; π ` l ->l′

P; π ` l->l′ P; π ` l′->l′′

P; π ` l->l′′

π; P ` ` no-cycles if ∀l, l′, `, `′, τ, τ′ where

P ` l : ` τ ∧ P ` l′ : `′ τ′ ∧ P; π ` l -> l′ :

(P; π ` l′ -> l)⇒ (` = `′)

σ(x) = l P ` l : ` τ

π(l) = (τ, v) ∀ f 7→ `′ ∈ F: ( f ∈ fields(τ)) ∧ P ` v[ f ] : `′

∀ f ∈ (fields(τ)− fields(F)): π; P ` v[ f ] simple

∀l′ 6= l: (P ` l′ : ` τ′)⇒ (π; P ` l′ simple) σ, P ` π : H ` π : P

σ, P ` π : `〈x[F]〉,H

∀l: (P ` l : ` τ)⇒ (π; P ` l simple) σ, P ` π : H ` π : P

σ, P ` π : `〈〉,H
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b.6.3 Stack Typing

` π : P

P ` (π, σ) : ·

` π : P ` (π, σ) : Γ P ` σ(x) : ` τ

P ` (π, σ) : (x : ` τ, Γ)

b.6.4 Configuration Typing

` π ` H; Γ ` π : P P ` (π, σ) : Γ σ, P ` π : H

` π, σ : H; Γ; P

∀` s.t. H ` ` . ∀l, τ s.t. P ` l : ` τ . l ∈ Rd ` π : P Rd ⊆ dom(π)

π; P ` Rd : H

` π, σ : H; Γ; P π; P ` Rd : H

` (Rd, π, σ) : (H; Γ; P)

` (Rd, π, σ) : (H; Γ; P) H; Γ; P ` e a Γ′;H′

` (Rd, π, σ, e)

b.7 progress and preservation

Theorem B.1 (Progress). For any (Rd, π, σ, e) where e is not a value, if `

(Rd, π, σ, e) then there exists some (R′d, π′, σ′, e′) such that (Rd, π, σ, e) eval−−→

(R′d, π′, σ′, e′)
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Theorem B.2 (Preservation). For any (Rd, π, σ, e), if ` (Rd, π, σ, e) and

there exists some (R′d, π′, σ′, e′) where (Rd, π, σ, e) eval−−→ (R′d, π′, σ′, e′) then

` (R′d, π′, σ′, e′)
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